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Abstract: Cross-Domain Image Retrieval (CDIR) is a challenging task in computer vision, aiming to match images
across different visual domains such as sketches, paintings, and photographs. Existing CDIR methods rely
either on supervised learning with labeled cross-domain correspondences or on methods that require training
or fine-tuning on target datasets, often struggling with substantial domain gaps and limited generalization to
unseen domains. This paper introduces a novel CDIR approach that incorporates textual context by leveraging
publicly available pre-trained vision-language models. Our method, Caption-Matching (CM), uses generated
image captions as a domain-agnostic intermediate representation, enabling effective cross-domain similarity
computation without the need for labeled data or further training. We evaluate our method on standard CDIR
benchmark datasets, demonstrating state-of-the-art performance in plug-and-play settings with consistent im-
provements on Office-Home and DomainNet over previous methods. We also demonstrate our method’s
effectiveness on a dataset of AI-generated images from Midjourney, showcasing its ability to handle complex,
multi-domain queries.

1 INTRODUCTION

Image Retrieval (IR) is a fundamental computer vi-
sion task that involves finding images similar to a
provided query from a large database. The applica-
tions of IR range from content-based search engines
to visual question answering systems [Antol et al.,
2015]. As the field has progressed, the challenge has
expanded beyond single-domain retrieval to Cross-
Domain Image Retrieval (CDIR), where the query
and target images may belong to different visual do-
mains such as sketches, paintings, or photographs.

Cross-domain image retrieval (CDIR) poses sig-
nificant challenges due to the large domain gap be-
tween query and target images. Traditional image
retrieval methods often fail in cross-domain settings
because discriminative features within a single do-
main may not generalize across domains [Wang et al.,
2017]. This domain gap, manifested as substantial
differences in visual characteristics between domains,
frequently results in poor retrieval performance.

Prior CDIR approaches have largely relied on su-
pervised learning, requiring extensive labeled data
and cross-domain correspondences [Sangkloy et al.,
2016, Yu et al., 2016, Song et al., 2017b], but col-
lecting such annotations is labor-intensive and limits

scalability. Domain adaptation techniques attempt to
align feature spaces across domains but often strug-
gle when the visual domains are highly disparate
[Tzeng et al., 2017]. Deep learning approaches that
learn domain-invariant features can improve align-
ment, yet they typically demand significant compu-
tational resources and may fail to generalize to un-
seen domains [Ganin et al., 2017]. Unsupervised and
self-supervised methods have been proposed to miti-
gate the reliance on labeled data [Kim et al., 2021, Li
et al., 2021,Hu and Lee, 2022,Wang et al., 2023], but
generally require training or fine-tuning on the target
datasets and may not fully overcome the domain gap.

Recent advancements in vision-language models,
such as CLIP [Radford et al., 2021], ALIGN [Jia
et al., 2021], and BLIP-2 [Li et al., 2023], have
opened new possibilities to tackle CDIR tasks. These
models, pre-trained on large datasets of image-text
pairs, have demonstrated remarkable zero-shot gener-
alization across various vision tasks. However, their
potential for CDIR remains largely unexplored.

In this paper, we introduce a novel approach
to CDIR that leverages the capabilities of Large
Language Models (LLMs) and Vision Transformers
(ViTs) without the need for domain-specific annota-
tions or fine-tuning. Our method, termed Caption-



Matching (CM), introduces caption-based semantic
alignment, a conceptual shift that treats text as a
domain-agnostic representation for cross-domain re-
trieval. Unlike prior methods that operate solely in the
visual embedding space by learning domain-invariant
features or aligning feature distributions, CM em-
ploys natural language descriptions to bridge domain
gaps in a fundamentally different manner. By map-
ping images from various domains to a shared seman-
tic space defined by captions, CM not only facilitates
effective cross-domain retrieval without explicit do-
main alignment but also captures high-level semantic
similarities across domains. This approach leverages
the combined semantic understanding of LLMs and
visual comprehension of ViTs, allowing our system to
handle multiple domains simultaneously without re-
quiring separate models or extensive fine-tuning for
each domain pair, setting it apart from conventional
techniques. The key contributions of our work are as
follows:

• We introduce a novel CDIR framework that oper-
ates entirely without additional training, leverag-
ing pre-trained vision-language models to elimi-
nate the need for labeled cross-domain data or cor-
respondence supervision. Our method uses gen-
erated image captions as a domain-agnostic inter-
mediate representation, enabling effective cross-
domain similarity computation.

• We demonstrate the effectiveness of our ap-
proach on DomainNet and Office-Home datasets,
surpassing state-of-the-art performance in CDIR
tasks.We further validate our method on a diverse
dataset of Midjourney-generated images, showing
its robustness in complex, multi-domain retrieval
scenarios.

2 RELATED WORK

2.1 Image Retrieval

Image retrieval (IR) is a fundamental task in com-
puter vision, typically involving the retrieval of im-
ages given an image query (image-image retrieval)
[Noh et al., 2017]. Traditional approaches often fol-
low a coarse-to-fine strategy, combining global re-
trieval with local feature aggregation and spatial ver-
ification. Deep learning and CNN-based methods
have largely replaced hand-crafted features, yielding
significant performance improvements [Noh et al.,
2017, Radenović et al., 2019]. Notable methods in-
clude DELF and DELG [Noh et al., 2017], which
learn local and global features jointly, GeM pool-

ing [Radenović et al., 2019] for attentive aggregation,
SOLAR [Ng et al., 2020] for self-attentive feature ag-
gregation, and DOLG [Yang et al., 2021], which fuses
local and global cues. Despite these advances, most
IR systems remain sensitive to visually similar dis-
tractors, as global embeddings often rely on geomet-
ric consistency during re-ranking [Lee et al., 2023].

Retrieval paradigms have progressively evolved
to embed natural language as a core interface for
query formulation. Text-based image retrieval (TBIR)
[Vendrow et al., 2024] uses textual queries to find
images (text-image retrieval), while other methods
[Song et al., 2017a, Sangkloy et al., 2022, Jia et al.,
2021] combine an image with its description as a
query ([image+text]-image retrieval) to improve sim-
ilarity comparisons. In contrast, our method intro-
duces a novel paradigm in which an image query re-
trieves semantically associated captions, each linked
to an image, effectively performing image retrieval
while leveraging a domain-agnostic, text-based in-
termediate (image-text retrieval). Importantly, it op-
erates without explicit domain alignment or labeled
cross-domain pairs and can handle multiple domains
simultaneously, unlike traditional methods that re-
quire separate models or fine-tuning for each domain
combination.

2.2 Cross-Domain Image Retrieval

Cross-domain image retrieval (CDIR) extends the
challenge of image retrieval by searching across di-
verse domains, such as sketches, cartoons, paint-
ings, and photographs. The primary challenge in
CDIR is bridging the domain gap between query and
database images. Early approaches leveraged cate-
gory information for discriminative feature extraction
or minimized losses like triplet [Yu et al., 2016] and
HOLEF [Song et al., 2017b] for cross-domain pair-
ing. However, these methods often require labor-
intensive cross-domain correspondence annotations,
limiting their practical applications [Sangkloy et al.,
2016].

Recent efforts have explored unsupervised or self-
supervised strategies to reduce reliance on labeled
data. CDS [Kim et al., 2021] combines in-domain
instance discrimination with cross-domain match-
ing to learn domain-invariant representations. Pro-
toNCE [Li et al., 2021] introduces prototypes as
latent semantic anchors within a prototypical con-
trastive framework. PCS [Yue et al., 2021] extends
prototypical learning to few-shot domain adaptation
through instance–prototype alignment. CCL [Hu and
Lee, 2022] uses cluster-wise contrastive learning with
a distance-to-distance objective for semantic align-



ment. CoDA [Wang et al., 2023] projects images into
a shared subspace via correspondence-free alignment
guided by self-matching and classifier-level consis-
tency. While diverse in approach, all of these meth-
ods require training or fine-tuning on the target CDIR
datasets, even when initialized with large pretrained
backbones. In contrast, our caption-matching frame-
work advances CDIR by operating entirely without
training or fine-tuning on the target datasets.

2.3 Vision-Language Foundation
Models

Vision-language models, such as CLIP [Radford
et al., 2021] and ALIGN [Jia et al., 2021], have
emerged as powerful foundation models by pre-
training image and language encoder pairs on large-
scale image-caption datasets. These models have
demonstrated remarkable zero-shot generalization ca-
pabilities across various tasks, including image re-
trieval, classification, and visual question answering
[Zhou et al., 2022, Song et al., 2022].

Following CLIP’s success, numerous vision-
language foundation models have been developed, in-
corporating larger datasets, novel architectures, and
advanced training objectives [Alayrac et al., 2022, Li
et al., 2022, Singh et al., 2022]. BLIP-2 [Li et al.,
2023], which introduces a querying transformer to
mediate between frozen pre-trained image encoders
and LLMs, achieving state-of-the-art performance on
various vision-language tasks. Although CLIP and
BLIP-2 have been widely used for retrieval and cap-
tioning, their joint use as an intermediate semantic
space for cross-domain retrieval remains unexplored.

In this work, we present a novel approach to
adapt vision-language foundation models for cross-
domain image retrieval tasks without requiring a ded-
icated CDIR dataset. Our caption-matching method
uniquely combines the strengths of LLMs and ViTs,
allowing it to capture high-level semantic similarities
across diverse visual domains.

3 METHODOLOGY

Here, we present our method, Caption-Matching
(CM), which utilizes pre-trained vision-language
models to facilitate cross-domain image retrieval
through a domain-agnostic, caption-based semantic
embedding. This approach allows CM to effec-
tively bridge the visual domain gap, enhancing re-
trieval accuracy without the need for extensive labeled
datasets or domain-specific tuning. Figure 1 depicts
an overview of the proposed approach.

3.1 Problem Statement

Consider a dataset distributed across a set of domains
S, where A ⊂ S and B ⊂ S represent specific subsets
associated with the query and target domains, respec-
tively. The task of cross-domain image retrieval in-
volves querying each image from subset DA in do-
main A and retrieving a selection of the top-k similar
images from subset DB in domain B. This operation
is formally denoted as A → B. Evaluation is con-
ducted at the category level, where retrieved images
are deemed correct if they match the category of the
query image. The challenge lies in effectively bridg-
ing the visual and semantic gaps between domains A
and B without relying on labeled correspondences, re-
quiring robust feature extraction that can generalize
across these varied domains.

3.2 The Caption-Matching Method

Aiming to implement a domain-agnostic retrieval
system, we introduce the Caption-Matching (CM)
method, which leverages the advanced capabilities of
LLMs and ViTs to analyze and synchronize data ex-
tracted from both image and text modalities. This
method employs two principal models: f , a CLIP-
based model that comprises fimage for image encod-
ing and ftext for text encoding, and g, a BLIP-2-based
model for generating textual captions from images.

Initially, each image xi from the target domain B
is processed by g to generate a descriptive caption ti.
These images are transformed into textual representa-
tions ti = g(xi), converting visual data into a semanti-
cally enriched text format. Subsequently, in the com-
parison phase, each image x j from the query domain
A is encoded into its visual embedding v j = fimage(x j)
by the CLIP model. Simultaneously, the text encoder
ftext is used to encode textual captions into embed-
dings. The matching process then computes the dot-
product similarity scores Si j = v j · ui between v j and
each ui, where ui is derived from ftext(ti), following
CLIP’s standard formulation. This metric assesses the
relevance between the query images and the captions
of the target images, facilitating a ranked retrieval
of the most semantically aligned images. The final
output is a sorted list of images from domain B that
best correspond to the query image in domain A, thus
bridging the semantic gap across domains via an ef-
fective integration of visual and linguistic analysis.

Figure 1 shows the diagram for the method pro-
posed, where a BLIP-2 model (g) acts as an image
captioning model and a CLIP model ( f ) acts as an
image-text matching model. The combined imple-
mentation of an image captioning and an image-text



Figure 1: Overview of the proposed Caption-Matching (CM) method. The process begins with the BLIP-2 model g generating
captions for each image in the database, where g(xi) = ti produces textual captions ti from images xi. These captions are then
processed through CLIP’s text encoder to obtain text embeddings ui = ftext(ti). Simultaneously, the query image xq is encoded
by CLIP’s image encoder fimage to produce a visual embedding vq = fimage(xq). A dot-product similarity score Siq = vq ·ui is
calculated between vq and each ui, resulting in a list of similarity scores sq. The relevance of each caption to the query image
is ranked by sorting sq and the corresponding images can be retrieved based on the highest scores.

matching model allows image representation using
natural language, facilitating the seamless embedding
of contextual information.

In the context of CDIR, a notable feature of CLIP
when pre-trained on a sufficiently large and diverse
dataset is its ability to bridge the domain gap with-
out requiring modifications to the embedding space.
Figure 2 illustrates this with a t-SNE [van der Maaten
and Hinton, 2008] projection of text embeddings from
selected examples. It shows that CLIP’s text en-
coder clusters captions based on their semantic con-
text while disregarding domain-specific terms such
as “photo”, “painting”, and “sketch.” This enables
the corresponding image embeddings to be accurately
matched with the correct image category across dif-
ferent domains. Hence, we choose captions as in-
termediates because text abstracts away stylistic do-
main characteristics while preserving semantic iden-
tity, making it suitable for CDIR.

4 EXPERIMENTS

4.1 Implementation Details

Models. We use two publicly available pre-trained
models: BLIP-21 for image captioning and CLIP2

1https://huggingface.co/Salesforce/blip2-opt-2.7b
2https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-

s32B-b79K

Figure 2: t-SNE visualization of CLIP text embeddings
illustrating clustering capability across domains. In this
experiment, captions were artificially constructed using
the template ”{Domain} of a {Class}” (e.g., “painting
of a bird”), showing how semantic similarities are pre-
served while domain-specific identifiers are abstracted
away, which facilitates domain-agnostic categorization.

for image-text matching. BLIP-2 combines a frozen
ViT image encoder with a pre-trained OPT lan-
guage model and was trained on a mixture of
human-annotated datasets (COCO, Visual Genome)
and large-scale web datasets (CC3M, CC12M, SBU,
LAION-400M). CLIP uses a ViT-Huge image en-
coder with a GPT-2 text encoder and was trained on
the LAION-2B-en dataset. Both models are used with
default inference parameters and their publicly avail-
able pre-trained weights without modification.

Datasets. We evaluate our method using two di-
verse datasets. (1) Office-Home [Venkateswara et al.,



2017] comprises approximately 15,500 manually an-
notated images sourced from the web, featuring four
distinct domains: art (Ar), clipart (Cl), product (Pr),
and real world (Rw)—spanning across 65 categories
of common everyday objects such as chairs, key-
boards, and bikes. (2) DomainNet [Peng et al., 2019]
contains around 600,000 manually annotated images
collected from the web, including six diverse do-
mains: clipart (C), infograph (I), painting (P), quick-
draw (Q), real (R), and sketch (S), spanning across
345 categories ranging from tools and clothing to nat-
ural objects and human body categories.

Baselines. We compare our method to state-of-
the-art CDIR approaches: CDS [Kim et al., 2021],
ProtoNCE [Li et al., 2021], PCS [Yue et al., 2021],
CCL [Hu and Lee, 2022], and CoDA [Wang et al.,
2023]. These methods require training on cross-
domain target datasets, whereas CM requires no
task-specific training or fine-tuning, yielding a di-
rect comparison between training-free and training-
based approaches. Furthermore, while all methods
require feature extraction backbones, our goal is not
to compare raw model capacity, but rather to evalu-
ate whether caption-based representations provide an
alternative paradigm for cross-domain retrieval. Ac-
cordingly, our results highlight methodological differ-
ences rather than variations in model scale.

Evaluation. We follow the experimental setup
and metrics of [Hu and Lee, 2022,Wang et al., 2023].
On Office-Home, we evaluate all query-target domain
pairs using precision scores P@1, P@5, P@15, and
mAP@All. On DomainNet, we consider categories
with over 200 samples and evaluate all domain pairs
using P@50, P@100, and P@200.

4.2 Results

Table 1 summarizes the experimental results and
comparisons with state-of-the-art methods. Our ap-
proach, which combines BLIP-2 for image caption-
ing and CLIP for image-text matching, substantially
outperforms existing techniques. On DomainNet and
Office-Home, it nearly doubles the precision of prior
methods across P@50, P@100, P@200 (DomainNet)
and P@1, P@5, P@15 (Office-Home). It also consis-
tently achieves higher mAP scores across all Office-
Home domain pairs. These large gains arise because
captions often encode semantic cues that remain in-
variant across visual domains, enabling CLIP’s text
encoder to perform more stable matching than visual
features alone. Complementing the quantitative anal-
ysis, Figure 3 presents a qualitative comparison, illus-
trating the superiority of CM and revealing insights
not captured by standard precision metrics.

Query Retrieved Results Method

CCL

CM

CCL

CM

CoDA

CM

Figure 3: Qualitative comparison of the top-10 retrieved re-
sults. From top to bottom, the domain pair are C-S (Do-
mainNet), Cl-Rw (Office-Home) and Cl-Ar (Office-Home).
Correctly retrieved images are outlined in green, while in-
correctly retrieved images are outlined in red.

4.3 Qualitative Evaluation with
Multi-Domain Dataset

The proposed method is also qualitatively evalu-
ated in an additional experiment with a multi-domain
dataset3 containing AI-generated images. This exper-
iment used only the first 25k images generated with
the model’s latest versions, namely Midjourney v5.0,
v5.1, and v5.2. Since the images are unlabeled, col-
lections of retrieved images are presented as qualita-
tive results. The aim of this experiment is to show
how the CM method performs with complex images
from previously unseen categories and ascertain its
potential utility as a tool in generative applications.

The results presented in Figure 4 demonstrate
the CM method’s robust performance on highly de-
tailed, AI-generated images. Notably, the method
exhibits the ability to retrieve images across multi-
ple domains for a single query, for example, pair-
ing realistic images with anime-style illustrations
(third query) or drawings with comic-style renderings
(fourth query). This capability further emphasizes the
domain-agnostic nature of the CM method.

5 DISCUSSION

Our Caption-Matching (CM) approach delivers
strong improvements in cross-domain image retrieval
while requiring no training or domain-specific adap-
tation. By leveraging BLIP-2 for caption genera-
tion and CLIP for image–text matching, CM inherits
rich semantic priors learned from large-scale multi-
modal datasets. As illustrated in Figure 2, CLIP cap-
tures both content and contextual cues, enabling it to

3Available at https://www.kaggle.com/datasets/iraklip/
modjourney-v51-cleaned-data.



Table 1: Comparison of retrieval performance between our method (CM) and state-of-the-art methods on the DomainNet and
Office-Home datasets. Domain pairs are denoted by abbreviations (e.g., C-S for Clipart to Sketch). Bold values indicate the
best performance for each metric and domain pair.

DomainNet
C-S S-C I-R R-I I-S S-I P-C C-P P-Q Q-P Q-R R-Q Avg

P@50
CDS [Kim et al., 2021] 0.458 0.591 0.285 0.567 0.306 0.463 0.632 0.378 0.188 0.214 0.193 0.154 0.369

ProtoNCE [Li et al., 2021] 0.468 0.545 0.284 0.570 0.282 0.398 0.554 0.391 0.216 0.240 0.264 0.251 0.372
PCS [Yue et al., 2021] 0.510 0.597 0.306 0.554 0.303 0.426 0.635 0.488 0.251 0.240 0.348 0.290 0.412

CCL [Hu and Lee, 2022] 0.563 0.631 0.355 0.577 0.313 0.437 0.664 0.526 0.397 0.334 0.428 0.419 0.470
CM (ours) 0.968 0.939 0.693 0.884 0.722 0.879 0.971 0.931 0.832 0.546 0.522 0.792 0.807

P@100
CDS [Kim et al., 2021] 0.424 0.488 0.279 0.398 0.295 0.361 0.473 0.352 0.189 0.214 0.191 0.156 0.318

ProtoNCE [Li et al., 2021] 0.427 0.450 0.285 0.418 0.268 0.320 0.437 0.359 0.212 0.228 0.257 0.248 0.326
PCS [Yue et al., 2021] 0.469 0.507 0.303 0.421 0.284 0.341 0.532 0.462 0.246 0.232 0.339 0.289 0.369

CCL [Hu and Lee, 2022] 0.527 0.573 0.352 0.467 0.293 0.361 0.568 0.501 0.386 0.338 0.428 0.421 0.435
CM (ours) 0.962 0.919 0.694 0.797 0.711 0.796 0.961 0.921 0.812 0.535 0.501 0.793 0.784

P@200
CDS [Kim et al., 2021] 0.372 0.374 0.275 0.264 0.270 0.273 0.329 0.328 0.179 0.195 0.187 0.158 0.267

ProtoNCE [Li et al., 2021] 0.364 0.351 0.285 0.303 0.242 0.248 0.326 0.321 0.206 0.216 0.244 0.238 0.279
PCS [Yue et al., 2021] 0.402 0.394 0.297 0.308 0.254 0.259 0.417 0.421 0.238 0.221 0.317 0.282 0.317

CCL [Hu and Lee, 2022] 0.474 0.482 0.344 0.355 0.265 0.281 0.467 0.461 0.376 0.343 0.427 0.416 0.391
CM (ours) 0.935 0.869 0.690 0.652 0.684 0.658 0.921 0.899 0.751 0.522 0.503 0.747 0.736

Office-Home
Ar-Cl Ar-Pr Ar-Rw Cl-Ar Cl-Pr Cl-Rw Pr-Ar Pr-Cl Pr-Rw Rw-Ar Rw-Cl Rw-Pr Avg

P@1
CDS [Kim et al., 2021] 0.256 0.328 0.451 0.224 0.272 0.325 0.358 0.377 0.540 0.447 0.389 0.494 0.372

ProtoNCE [Li et al., 2021] 0.290 0.295 0.405 0.213 0.212 0.252 0.357 0.361 0.538 0.445 0.412 0.477 0.355
PCS [Yue et al., 2021] 0.312 0.333 0.417 0.245 0.264 0.291 0.392 0.395 0.564 0.450 0.406 0.499 0.381

CCL [Hu and Lee, 2022] 0.327 0.354 0.451 0.273 0.278 0.333 0.425 0.423 0.574 0.480 0.447 0.517 0.407
CM (ours) 0.783 0.718 0.807 0.678 0.711 0.729 0.843 0.883 0.924 0.845 0.848 0.869 0.803

P@5
CDS [Kim et al., 2021] 0.238 0.315 0.412 0.203 0.265 0.303 0.325 0.350 0.501 0.408 0.365 0.473 0.346

ProtoNCE [Li et al., 2021] 0.262 0.279 0.364 0.174 0.206 0.227 0.306 0.340 0.482 0.393 0.377 0.448 0.321
PCS [Yue et al., 2021] 0.287 0.315 0.385 0.213 0.259 0.261 0.348 0.375 0.508 0.399 0.381 0.471 0.350

CCL [Hu and Lee, 2022] 0.308 0.347 0.423 0.239 0.273 0.306 0.379 0.374 0.527 0.437 0.415 0.485 0.376
CM (ours) 0.768 0.723 0.791 0.637 0.700 0.712 0.791 0.855 0.878 0.801 0.829 0.855 0.778

P@15
CDS [Kim et al., 2021] 0.224 0.289 0.387 0.173 0.249 0.278 0.268 0.304 0.456 0.355 0.332 0.440 0.313

ProtoNCE [Li et al., 2021] 0.230 0.258 0.340 0.145 0.205 0.208 0.246 0.282 0.422 0.330 0.320 0.412 0.283
PCS [Yue et al., 2021] 0.261 0.295 0.362 0.175 0.249 0.240 0.288 0.328 0.454 0.340 0.341 0.437 0.314

CCL [Hu and Lee, 2022] 0.287 0.326 0.401 0.205 0.260 0.281 0.314 0.337 0.479 0.384 0.374 0.450 0.341
CM (ours) 0.728 0.694 0.756 0.558 0.656 0.671 0.694 0.804 0.837 0.721 0.788 0.816 0.727

mAP@All
PCS [Yue et al., 2021] 0.343 0.463 0.516 0.323 0.405 0.406 0.470 0.421 0.613 0.516 0.428 0.601 0.459

CoDA [Wang et al., 2023] 0.347 0.496 0.532 0.332 0.429 0.447 0.504 0.452 0.652 0.531 0.460 0.652 0.486
CM (ours) 0.528 0.539 0.590 0.452 0.509 0.523 0.571 0.596 0.658 0.596 0.600 0.662 0.569

bridge domain gaps that challenge traditional visual-
only methods.

The use of captions as a domain-agnostic inter-
mediate representation allows CM to encode high-
level semantics that remain stable across diverse vi-
sual styles. This leads to more meaningful retrieval
results, as shown in Figure 3, where CM returns im-
ages that align with both the category and contex-
tual attributes of the query. Unlike existing CDIR
approaches that rely solely on visual features, CM
benefits from the complementary strengths of vision-
language modeling.

CM also demonstrates strong scalability, support-
ing multiple domains without requiring separate mod-
els or fine-tuning. Its ViT-based components accept
variable input resolutions, avoiding distortions com-
mon in CNN-based pipelines. Importantly, in con-
trast to existing CDIR methods, which are trained
directly on the evaluation datasets to learn domain-

invariant visual features, CM relies solely on off-the-
shelf pre-trained models and achieves superior re-
trieval performance. This is further reflected in qual-
itative results such as those in Figure 3, where CM
retrieves images that match both the category and
pose of the query (e.g., a tiger laying down), captur-
ing contextual semantics that visual-only methods fail
to model. These findings highlight the advantages of
multimodal representations for CDIR and suggest that
further advances in caption generation and large-scale
pre-training could yield even greater improvements.

6 CONCLUSIONS

We proposed a novel caption-matching approach for
cross-domain image retrieval that leverages both lan-
guage and vision features for the task. The CM



Figure 4: Top-5 retrieval results on Midjourney’s database. Descriptions were generated by BLIP-2 as part of the CM method.

method matches a query image with the most suit-
able descriptions, which are concurrently associated
with images from the target database. While most
approaches in the literature are limited to operations
with visual embeddings, the CM method overcomes
the domain gap by strategically integrating CLIP,
whose text encoder is able to cluster text descriptions
based on image context. It achieves state-of-the-art
performance in CDIR and performs remarkably well
on AI-generated images, without the need for fine-
tuning on specific datasets. Our work highlights the
potential of using language as a bridge across visual
domains, suggesting new research directions where
captions or textual prompts serve as structured inter-
mediates.
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