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ABSTRACT

We introduce Cluster Contrast (CueCo), a novel approach to
unsupervised visual representation learning that effectively
combines the strengths of contrastive learning and clustering
methods. Inspired by recent advancements, CueCo is designed
to simultaneously scatter and align feature representations
within the feature space. This method utilizes two neural
networks, a query and a key, where the key network is up-
dated through a slow-moving average of the query outputs.
CueCo employs a contrastive loss to push dissimilar features
apart, enhancing inter-class separation, and a clustering objec-
tive to pull together features of the same cluster, promoting
intra-class compactness. Our method achieves 91.40% top-1
classification accuracy on CIFAR-10, 68.56% on CIFAR-100,
and 78.65% on ImageNet-100 using linear evaluation with
a ResNet-18 backbone. By integrating contrastive learning
with clustering, CueCo sets a new direction for advancing
unsupervised visual representation learning.

Index Terms— Self-supervised learning, contrastive learn-
ing, clustering, unsupervised learning, representation learning

1. INTRODUCTION

Self-supervised learning focuses on extracting features without
relying on manual annotations, increasingly closing the perfor-
mance gap with supervised training techniques in computer
vision. Recent state-of-the-art methods in contrastive learning
treat each image and its variations as distinct classes, yield-
ing representations that can discriminate between different
images while achieving invariance to image transformations.
Key to these methods are two fundamental components: (a) a
contrastive loss mechanism [1] and (b) a series of image trans-
formations [2]. Both elements are crucial for the performance
of the resulting models [2, 3].

Unlike contrastive learning, which primarily focuses on
intra-image invariance, clustering-based methods enable ex-
ploration of similarities between different images [4]. While
initial assessments of these methods were generally conducted
on smaller datasets [5], recent approaches have advanced
clustering-based representation learning to larger scales [4].
Specifically, these methods generate pseudo-labels through
clustering, which then serve as supervision for subsequent

training [6]. Recent innovations have simplified this process
by performing clustering and network updates simultaneously,
enhancing the adaptation of the model to evolving data charac-
teristics [7].

In this work, we introduce Cluster Contrast (CueCo), a
novel self-supervised learning framework designed to enhance
visual representation learning by leveraging the synergistic
effects of contrastive learning and clustering methodologies
(see Figure 1). Inspired by the “push-pull” dynamics observed
in physical forces, CueCo utilizes a dual mechanism that opti-
mizes the feature space: the contrastive component, leveraging
the InfoNCE loss [8], effectively “pushes” dissimilar represen-
tations apart, akin to repulsive forces, ensuring that distinct
classes are well-separated. Concurrently, the clustering com-
ponent “pulls” similar representations closer, analogous to
attractive forces, promoting tighter clusters of like data points.

We make the following contributions: (1) We introduce a
novel unsupervised method that employs a dual mechanism
to optimize the feature space through “push-pull” dynamics,
effectively leveraging both contrastive and feature space clus-
tering losses to refine feature discriminability; (2) We pro-
vide a comprehensive theoretical analysis of the objectives of
our framework, illustrating how the integration of contrastive
loss with feature space clustering losses cohesively enhances
feature representation; (3) We demonstrate state-of-the-art
performance on CIFAR-10, CIFAR-100, and ImageNet-100,
underscoring the effectiveness of CueCo.

2. RELATED WORK

2.1. Contrastive Methods

Contrastive learning employs instance discrimination, where
each image is treated as a unique class. This approach pulls to-
gether anchor and “positive” samples while pushing apart “neg-
ative” samples [2]. Positive pairs are generated through mul-
tiple views like augmentations [2, 9], patches [8], or teacher-
student models [10, 11]. Training typically uses InfoNCE-
based objectives [8, 2] to maximize mutual information be-
tween pairs. To address computational constraints, methods
like MoCo [9] introduce memory structures, while ReLIC [12]
improves generalization through causal frameworks. Recent
approaches eliminate negative samples [10, 13] or use regu-
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(a) Networks to get representations (b) The proposed framework (c) Contrastive methods

Fig. 1. CueCo framework. Like typical contrastive methods, CueCo processes two augmented views, v and v′, of the same image
x through encoders fθ and fξ, producing feature vectors z = fθ(v) and z′ = fξ(v

′). In addition to that, CueCo: (a) enforces
inter-class separation via contrastive loss, (b) improves intra-class cohesion through clustering, and (c) integrates both for refined
feature representation.

larization [14, 15] to prevent collapse, while others enhance
learning through synthetic negatives [16].

2.2. Clustering Methods

Clustering approaches like DeepCluster [6] use K-means to
form groups and learn features iteratively. While ODC [17]
and CoKe [18] attempt to improve this process, the inherent
delay in supervisory signals remains problematic. SwAV [4]
reframes grouping as pseudo-labelling with optimal transport,
though their equipartition constraints may reduce grouping
effectiveness. Alternative approaches include prototype-based
methods [19], momentum clusters [7], and contrastive cluster-
ing [20] which treats rows and columns of feature matrices
as instance and cluster representations directly. However, our
approach differs by introducing separate instance-level and
cluster-level queues with both soft and hard assignments, pro-
viding more flexible feature learning.

3. METHODOLOGY

3.1. Contrastive Learning

Contrastive learning serves as the backbone of our framework,
primarily focusing on scattering features across the feature
space to enhance their discriminability. Contrastive learning
seeks to differentiate between similar and dissimilar data pairs.
We utilize a dual-crop strategy, similar to the methods in [2, 9],
with random data augmentations. Given an image x, and two
distributions of image augmentation T and T ′, we create two
augmented views of the same image using the transformation
t ∼ T and t′ ∼ T ′, i.e., v = t(x) and v′ = t′(x). Two
encoders, fθ and fξ, generate the vectors z = fθ(v) and

z′ = fξ(v
′) respectively. The learning objective minimizes a

contrastive loss using the InfoNCE criterion [8]:

L1(z, z
′) = − log

exp(z⊤ · z′/τ)

exp(z⊤ · z′/τ) +
K∑

k=1

exp(z⊤ · zk/τ)

(1)
where, z′ is fξ’s output from the same augmented image as
z, and {zk}Kk=1 includes outputs from different images, rep-
resenting negative samples. The temperature parameter τ
adjusts scaling for the ℓ2-normalized vectors z and z′. This
loss function scatters the feature representations by forcing
them to occupy distinct points in the feature space, reducing
the likelihood of different instances collapsing into indistin-
guishable points. Following [9, 21], we maintain a queue of
negative keys, refreshing only the queries and positive keys in
each training batch. A momentum encoder updates the base
encoder to ensure consistent representations across updates
ξ ← m ·ξ+(1−m) ·θ, where m is the momentum coefficient
[9, 10].

3.2. Feature Space Clustering

Beyond contrastive learning, our goal is to develop an encoder
that groups images of the same class into distinct regions of the
feature space. While contrastive learning spreads the feature
vectors of different classes, we introduce an objective to pull
together features of the same class, forming tight clusters.
Since true class labels are not available during pretraining, we
apply a clustering algorithm, such as K-means, to infer pseudo-
classes. We then gather pre-softmax features, termed activation
vectors, from images classified under the same pseudo-class.
With this, we can store a running average class prototype,



or mean activation vector, ci, given a key z′ = fξ(x) that
belongs to the set Si of features assigned to i-th cluster, along
the per-class variance σ2

i via sum of squares as follows:

ci =
1

|Si|
∑
z′∈Si

z′ and σ2
i =

1

|Si|
∑
z′∈Si

(z′ − ci)
2 (2)

In the clustering-based approach to learning representa-
tions, the first step involves assigning each feature vector z to
a cluster centroid. This assignment is determined by:

ci[z] = argmin
cl

∥z− cl∥ (3)

where cl are the available centroids and ci is the normalized
mean vector of the cluster to which z is closest in terms of
Euclidean distance. After this assignment, the learning objec-
tives can be applied to refine the feature vectors with respect
to their clusters.

The first clustering objective, the centroid contrastive loss,
aligns features with the centroid of their assigned cluster, en-
suring they remain distinct from centroids of other clusters.
This is achieved with an InfoNCE objective [8] that measures
the similarity between the features and their respective cluster
centroids:

L2(z, ci[z]) = − log
exp(z⊤ · ci[z]/τ)

exp(z⊤ · ci[z]/τ) +
L∑

l=1

exp(z⊤ · cl/τ)

(4)
where ci[z] is the centroid to which z has been assigned, cl are
the centroids of other clusters, and τ is a temperature parameter
that adjusts the ℓ2 normalized vectors (can be different from
the temperature in contrastive loss). This loss encourages
each feature vector z to align closely with its own cluster
centroid while remaining distinct from the centroids of other
clusters, effectively refining the granularity of the learned
representations.

The second objective, namely the variance loss, minimizes
the squared Euclidean distance between features and their
corresponding cluster centroid, scaled by the variance of the
cluster:

L3(z, ci[z]) =

∥∥z− ci[z]
∥∥2

2 · σ2
i[z] + ϵ

(5)

where σ2
i is the variance of the cluster to which z is assigned

and ϵ = 10−6 is a small constant to prevent division by zero.
This objective ensures that not only do the features align with
the centroids, but they also conform to the cluster’s overall dis-
tribution, promoting uniformity within clusters and enhancing
the robustness of the clustering.

3.3. Final Objective

The encoder minimizes a combination of the loss functions:

L = λ1 · L1 + λ2 · L2 + λ3 · L3 (6)

where λ1, λ2, λ3 are coefficients that balance the impact of
each loss component on the representation learning. After
training, only the convolutional encoder of fθ is as in [9],
utilizing fξ during training to compute mean vectors and vari-
ances. The encoder fξ maintains a slow-moving average of
fθ, which stabilizes the feature representations over time and
ensures a consistent interpretation of the feature space. This
consistency is critical for maintaining reliable cluster centroids
and standard deviations, thereby enhancing the overall robust-
ness and accuracy of the clustering mechanism. Both the
centroid contrastive and variance losses during the forward
pass are computed using the outputs from fθ, as the parame-
ters need to be updated based on the current, directly observed
representations, rather than the averaged historical data.

3.4. Towards Online Feature Space Clustering

Using an offline clustering algorithm like K-means is restric-
tive because it requires that the algorithm be applied at the
end of each epoch to use the resulting cluster centroids and
standard deviations for training objectives. Moreover, once
established, the clustering remains unchanged for the dura-
tion of the epoch, rendering it static. This approach becomes
particularly impractical for large datasets. To make the clus-
tering algorithm even more tractable, we apply K-means in
the queue to get the cluster centers and cluster standard devia-
tions. Furthermore, cluster centroids need to reflect the most
current instances to facilitate gradient propagation and must
be updated in sync with fθ using a differentiable function [7].
To address these challenges, we introduce a momentum group-
ing scheme, similar to [7]. We initialize the cluster features
{c1, c2, . . . cL} randomly or via a method such as K-means
and throughout the training process, we continuously update
the centroids ci and standard deviations σi at each iteration as
follows:

ci ← β1 · ci + (1− β1) ·

(
1

|Si|
∑
z∈Si

z

)
(7)

σ2
i ← β2 · σ2

i + (1− β2) ·

(
1

|Si|
∑
z∈Si

(z− µi)
2

)
(8)

where µi is the mean vector of features in cluster i and β1, β2

represent the momentum ratios. The momentum grouping
method dynamically assigns each instance to the nearest cen-
troid and updates the centroid and standard deviation features
in a momentum-based manner. Consequently, the centroid
and standard deviation features consistently represent the most
recent visual characteristics of the instances.



(b) Feature space clustering(a) Contrastive methods

repulsive
forces

attractive
forces

view's cluster
points

view
point

other cluster
points

other cluster
points

cluster
centroids

(c) The proposed framework

Fig. 2. Visualization of the repulsive and attractive forces. (a) Illustrates the contrastive objective, emphasizing class separation
(Section 3.1). (b) Applies feature space clustering to improve intra-class compactness (Section 3.2). (c) Demonstrates the CueCo
framework, merging (a) and (b).

3.5. Intuition on Behavior

The dynamics within CueCo resemble the forces in electro-
magnetism, where embeddings are metaphorically “charged”
to repel or attract each other based on the model’s losses and
architecture. The contrastive loss acts as a repulsive force,
pushing apart embeddings of dissimilar instances to expand
the feature space, akin to like charges repelling. In contrast,
clustering-driven losses act as an attractive force, pulling to-
gether embeddings of similar instances to form cohesive clus-
ters, similar to oppositely charged particles attracting. As
illustrated in Figure 2, repulsive forces ensure wide separation
among classes, while attractive forces (e.g., with λ2, λ3 > 0)
pull embeddings into tightly-knit groups. The ultimate goal
is to reach an equilibrium after t training steps, where embed-
dings zt,T i = f(xi;wt) achieve optimal separation between
dissimilar classes and cohesion within similar classes, result-
ing in robust, accurate representations.

4. EXPERIMENTS

4.1. Implementation Details

We evaluate CueCo on CIFAR-10, CIFAR-100 [25], and
ImageNet-100 [26]. Each input image is transformed twice to
generate two different views using the same augmentation as
used in [10]. Our encoder fθ includes a ResNet-18 backbone
(adapted by replacing the 7 × 7 convolution (conv1) with
a 3 × 3 convolution and removing the max pooling layer),
a 2-layer MLP projection head, and a prediction head [23].
The encoder fξ shares the backbone and projection head but
excludes the prediction head and is updated as a moving
average of fθ [9, 10]. Both MLPs have hidden layers of
4096-d with ReLU [27], 256-d output layers without ReLU,
and batch normalization [28]. For pretraining we use the SGD

optimizer [29] with a base learning rate of 0.3 (decreased to 0
with cosine schedule), momentum of 0.9, and weight decay
of 10−4. Clustering is frozen for the first 313 iterations to
prevent instability, and cluster features are reset every 1,000
iterations to avoid collapse and maintain balanced cluster
distributions (following [4, 7]). We train CIFAR-10/1000 for
1000 epochs and ImageNet-100 for 400 epochs. We use a
FIFO queue of size 16,384 from which we calculate the cluster
centroids and variances (but updated via momentum to reduce
computational overhead), and the momentum coefficient for
the moving average encoder starts at 0.996 and increases to 1.0
using a cosine schedule. All temperatures are set to τ = 0.2,
and loss weights are λ1 = 1, λ2 = 0.1, and λ3 = 0.01. While
we empirically set the loss coefficients, we also performed

Table 1. Linear top-1 and top-5 accuracies (%) obtained
through linear evaluation protocol on CIFAR-10, CIFAR-100,
and ImageNet-100 datasets using ResNet-18 as the backbone
network. Results adapted from [22].

Method CIFAR-10 CIFAR-100 ImageNet-100

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
BYOL [10] 92.61 99.82 70.18 91.36 80.09 94.99
DINO [11] 89.19 99.31 66.38 90.18 74.84 92.92
SimSiam [13] 90.51 99.72 65.86 89.48 77.04 94.02
MoCo-v2 [21] 92.94 99.79 69.54 91.49 78.20 95.50
MoCo-v3 [23] 93.10 99.80 68.83 90.57 80.86 95.18
ReSSL [24] 90.63 99.62 65.83 89.51 76.59 94.41
VICReg [15] 90.07 99.71 68.54 90.83 79.22 95.06
SwAV [4] 89.17 99.68 64.67 88.52 74.28 92.84
SimCLR [2] 90.74 99.75 65.39 88.58 77.48 93.42
BT [14] 89.57 99.73 69.18 91.19 78.62 94.72
CueCo (ours) 91.40 99.79 68.56 91.05 78.65 94.03



Table 2. Unsupervised image classification results on CIFAR-10 and CIFAR-100 datasets. We report standard clustering
metrics including Normalized Mutual Information (NMI), Adjusted Mutual Information (AMI), Adjusted Rand Index (ARI), and
clustering accuracy (ACC). All methods are reimplemented.

Method CIFAR-10 CIFAR-100

NMI AMI ARI ACC NMI AMI ARI ACC
MoCo-v2 60.96 60.88 28.95 63.51 51.77 45.84 9.95 31.72
SimCLR 69.03 68.98 53.14 74.50 50.75 44.60 11.15 32.17
CueCo (ours) 69.33 69.01 53.87 75.06 52.37 46.31 11.35 33.82

Table 3. Ablation studies on CIFAR-100 evaluating the impact of different loss terms. We report linear evaluation accuracies
(top-1, top-5), k-nearest neighbor accuracies (20-NN, 100-NN), and clustering metrics (NMI, AMI, ARI, ACC). Checkmarks
indicate which loss terms are active. All methods are reimplemented.

λ1 λ2 λ3 Top-1 Top-5 20-NN 100-NN NMI AMI ARI ACC
✓ 67.9 90.7 66.5 66.4 50.5 44.4 8.3 31.1
✓ ✓ 66.9 90.6 63.9 62.4 54.6 48.6 14.9 34.5
✓ ✓ 68.4 90.7 66.7 66.8 51.2 45.1 8.6 32.3
✓ ✓ ✓ 68.5 91.0 66.8 67.0 52.3 46.3 11.3 33.8

extensive ablations that we did not include in the paper.

4.2. Linear Evaluation

We evaluate CueCo’s representations by training a linear clas-
sifier on top of the frozen features from the ResNet-18 encoder.
The linear classifier is trained for 100 epochs using a learning
rate of 3.0 with a cosine learning rate scheduler. Training min-
imizes the cross-entropy loss with an SGD optimizer, momen-
tum of 0.9, and weight decay of 1×10−6, using a batch size of
256. We report top-1 and top-5 accuracies as percentages on
the test set in Table 1, comparing our results to previous state-
of-the-art self-supervised methods from [22]. Our method
performs competitively with state-of-the-art self-supervised
approaches, while not being heavily tuned.

4.3. Unsupervised Image Classification

We evaluate our approach on the task of unsupervised im-
age classification for CIFAR-10/100. We report the standard
clustering metrics: Normalized Mutual Information (NMI),
Adjusted Normalized Mutual Information (AMI), Adjusted
Rand-Index (ARI), and Clustering Accuracy (ACC), as in [30].
We compare our approach with reproductions of MoCo-v2
[21] and SimCLR [2], using the same hyperparameter set-
tings for a fair comparison. As shown in Table 2, our method,
CueCo, consistently outperforms the compared methods across
all metrics on both CIFAR-10 and CIFAR-100.

4.4. Ablation Study

We investigate the importance of each objective in our method,
focusing on contrastive, centroid contrastive, and variance re-
duction losses. Table 3 presents results on CIFAR-100 using

different loss combinations. Contrastive loss alone provides
a strong baseline, while adding centroid contrastive loss im-
proves clustering metrics. Incorporating variance reduction
loss further enhances linear evaluation and unsupervised clas-
sification. These findings highlight the effectiveness of our
multi-objective approach in producing versatile and discrimina-
tive representations by balancing instance-level distinctiveness
and class-level coherence.

5. CONCLUSION

CueCo advances unsupervised visual representation learning
by integrating contrastive learning with momentum clustering,
creating a “push-pull” dynamic that simultaneously enhances
inter-class separation and intra-class cohesion. The framework
demonstrates competitive performance on benchmark datasets
while particularly excelling in unsupervised image classifi-
cation metrics. By balancing these complementary forces,
CueCo establishes a promising direction for self-supervised
learning that produces more discriminative representations
with improved class structure without requiring labeled data.
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