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Abstract

Knowledge Distillation (KD) aims to transfer knowledge
from a large teacher model to a smaller student model. While
contrastive learning has shown promise in self-supervised
learning by creating discriminative representations, its ap-
plication in knowledge distillation remains limited and fo-
cuses primarily on discrimination, neglecting the structural
relationships captured by the teacher model. To address
this limitation, we propose Discriminative and Consistent
Distillation (DCD), which employs a contrastive loss along
with a consistency regularization to minimize the discrep-
ancy between the distributions of teacher and student rep-
resentations. Our method introduces learnable temperature
and bias parameters that adapt during training to balance
these complementary objectives, replacing the fixed hyperpa-
rameters commonly used in contrastive learning approaches.
Through extensive experiments on CIFAR-100 and ImageNet
ILSVRC-2012, we demonstrate that DCD achieves state-
of-the-art performance, with the student model sometimes
surpassing the teacher’s accuracy. Furthermore, we show
that DCD’s learned representations exhibit superior cross-
dataset generalization when transferred to Tiny ImageNet
and STL-10. Code is available at https://github.
com/giakoumoglou/distillers.

1. Introduction
Knowledge Distillation (KD) has emerged as a prominent
technique for model compression, enabling the transfer of
knowledge from large, high-capacity teacher models to more
compact student models [31]. This approach is particularly
relevant today, as state-of-the-art vision models in tasks such
as image classification [21, 42], object detection [39, 54],
and semantic segmentation [10, 11] continue to grow in size
and complexity. While these large models achieve impres-
sive performance, their computational demands make them
impractical for real-world applications [23, 36], leading prac-
titioners to seek more efficient alternatives through model
compression techniques [5, 53].

Figure 1. Radar plots comparing top-1 accuracy (%) of different
distillation methods with DCD on CIFAR-100. Methods are repre-
sented by color as follows: Teacher (blue), Student (orange), KD
[31] (green), CRD [60] (red), CRD+KD [60] (purple), DCD (ours)
(brown), and DCD+KD (ours) (pink).

The representation learning capabilities of neural net-
works play a crucial role in their performance [4, 38]. In
the context of KD, while the original approach [31] focused
on transferring knowledge through logit outputs, subsequent
work has emphasized the importance of intermediate feature
representations [50, 55, 61, 67]. These intermediate repre-
sentations capture rich structural information and hierarchi-
cal features that are essential for robust model performance
[35, 70]. Recent advances in KD have explored various ways
to transfer this representational knowledge, including atten-
tion transfer [67], correlation congruence [52], and relational
knowledge distillation [50].

Contrastive learning has recently revolutionized self-
supervised representation learning [13, 28], demonstrating
its effectiveness in learning discriminative features without
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labels. This success has inspired its adoption in KD frame-
works [22, 60]. However, existing contrastive distillation
approaches face several limitations: they often require large
memory banks to store negative samples [60], rely on fixed
hyperparameters that limit their adaptability [13], and may
not fully preserve the structural relationships captured by
the teacher model [61]. Furthermore, the focus on discrim-
ination alone can lead to suboptimal knowledge transfer,
as it neglects the importance of maintaining consistent rep-
resentational patterns between teacher and student models
[52, 60].

To address these limitations, we propose Discriminative
and Consistent Distillation (DCD), an approach that com-
bines contrastive learning with consistency regularization to
ensure both discriminative power and structural consistency
in the student’s representations (see Figure 2). Our method
eliminates the need for memory banks by leveraging in-batch
negative samples and introduces learnable temperature and
bias parameters that dynamically adjust during training, en-
abling more flexible and efficient knowledge transfer. This
adaptive approach allows the student to better capture both
instance-level discriminative features and global structural
patterns from the teacher, leading to more robust and gener-
alizable representations [35].

Our contributions are twofold:
1. We propose DCD, an approach that combines contrastive

learning with consistency regularization to ensure both
discriminative and structurally consistent representations.
Our method eliminates the need for memory banks and
introduces learnable parameters that dynamically adjust
during training, enabling more efficient knowledge trans-
fer than existing approaches.

2. We demonstrate the effectiveness of DCD through exten-
sive experiments on standard benchmarks, showing sig-
nificant improvements in both accuracy and robustness.
DCD outperforms other methods, achieving a 20.31%
relative improvement1 over the original KD. When com-
bined with KD, it shows a 73.87% relative improvement
over the original KD.
The rest of this paper is organized as follows. Section 2

reviews related work in KD and contrastive learning. Sec-
tion 3 details our proposed DCD methodology. Section 4
presents our experimental setup and results, and Section 5
concludes the paper.

2. Related Work
Our method bridges the gap between contrastive learning
and knowledge distillation by integrating contrastive learning

1Average relative improvement is calculated as:
1
N

∑N
i=1

AcciDCD−AcciKD
AcciKD−Accivan

, where AcciDCD, AcciKD, and Accivan repre-

sent the accuracies of DCD, KD, and vanilla training of the i-th student
model, respectively [60].

principles with an explicit consistency regularization.

2.1. Knowledge Distillation
The seminal work on KD [31] introduced the concept of
transferring knowledge through softened logit outputs, us-
ing temperature scaling in the softmax to better capture the
teacher model’s knowledge. Similar to the original KD
work, our method utilizes temperature scaling, but we extend
this concept through our adaptive temperature mechanism.
Rather than using a fixed temperature parameter, DCD learns
the optimal temperature during training, allowing for more
flexible and dynamic knowledge transfer.

Logit-based methods. Following this direction, several
works have enhanced logit-based distillation through various
techniques. Some recent advancements include label decou-
pling [72], instance-specific label smoothing [66], probabil-
ity reweighting [49], and normalizing logits before applying
softmax and KL divergence [59]. These methods primar-
ily focus on improving how the teacher’s predictions are
processed and transferred to guide the student’s learning.

Feature-based methods. Another line of research focuses
on leveraging intermediate feature representations for knowl-
edge transfer. FitNets [55] pioneered this approach by using
intermediate ”hints” to guide the student’s learning process.
Subsequent works have explored various aspects of feature-
based transfer: attention transfer [67] aligns attention maps
between teacher and student, correlation congruence [52]
preserves structural relationships in feature spaces, and Re-
lational Knowledge Distillation (RKD) [50] transfers mu-
tual relations of data examples. Recent advances include
cross-stage connection paths [12], direct reuse of teacher’s
classifier [8], and many-to-one representation matching [41].
Notably, Contrastive Representation Distillation (CRD) [60]
leverages contrastive learning to maximize mutual informa-
tion between teacher and student representations, though
it requires large memory buffers for storing negative sam-
ples. Like RKD, we preserve relational information through
our consistency regularization term that explicitly maintains
structural relationships. Moreover, our approach eliminates
the need for memory banks through efficient in-batch nega-
tive sampling and adds structural consistency preservation,
making it both more efficient and effective.

Architecture-aware methods. Recent work has also ex-
plored the interaction between network architecture and dis-
tillation effectiveness. Methods in this category include
differentiable meta-learning for architecture search [19],
training-free frameworks for student architecture selection
[20], and graph-based methods for architecture adaptation
[44]. These approaches aim to optimize not just the distil-
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lation process but also the underlying network structures to
achieve better knowledge transfer.

2.2. Contrastive Learning
Contrastive methods in self-supervised learning have proven
effective for learning robust representations by maximizing
mutual information [32, 62]. These methods transform un-
supervised learning into a classification problem, building
on foundational work in metric learning [16, 26] to distin-
guish between positive and negative samples. The theoretical
foundations [2, 25] show that such objectives maximize a
lower bound on mutual information, crucial for meaning-
ful representations. Recent advances using momentum en-
coders [28], stronger augmentations [13], and methods that
eliminate negative samples [24] have further improved self-
supervised learning. Additionally, recent strategies explore
invariance regularizers [48], while others prevent model col-
lapse through redundancy reduction [69] or regularization
[3]. Some approaches achieve this by eliminating negative
samples through asymmetric Siamese structures or normal-
ization [6, 14, 24]. Our method combines instance-level
discrimination [63, 64] with an consistency constraint, en-
suring the student learns both discriminative features and
preserves the teacher’s structural knowledge. Furthermore,
our approach does not rely on fixed negative samples or
momentum encoders [45]; instead, it employs a dynamic
method that adapts to the model’s current state during train-
ing. Our method shares the theoretical underpinnings of
mutual information maximization but extends this frame-
work to include explicit structural preservation, providing a
more comprehensive approach to knowledge transfer.

3. Methodology
This section presents our methodology to improve the ef-
ficiency and accuracy of KD. Our method, Discriminative
and Consistent Distillation (DCD), focuses on learning rep-
resentations that are both discriminative through contrastive
learning and structurally consistent with the teacher model
through a consistency regularization. DCD ensures that
the student model learns to differentiate between different
instances while preserving the distributional relationships
captured by the teacher model. Figure 2 shows an overview
of the proposed method in the latent space.

3.1. Preliminaries
KD involves transferring knowledge from a high-capacity
teacher neural network, denoted a fT , to a more compact
student neural network fS . Consider xi as the input to these
networks, typically an image. We represent the outputs at the
penultimate layer (just before the final classification layer, or
logits) as zTi = fT (xi) and zSi = fS(xi) for the teacher and
student models, respectively. The primary objective of KD is
to enable the student model to approximate the performance

Figure 2. Overview of DCD. (a) Discriminative learning through
contrastive distillation encourages student features (solid blue) to
differentiate between instances by pulling them closer to their cor-
responding teacher features (transparent blue) while pushing away
from other instances as negative samples (black dots). (b) Struc-
tural consistency through consistency regularization preserves the
distributional relationship patterns captured by the teacher model
by aligning the student and teacher feature similarities (represented
by dotted lines) through KL divergence minimization.

of the teacher model. The overall distillation process can be
mathematically expressed as:

L = Lsup(yi, z
S
i ) + λ · Ldistill(z

T
i , z

S
i ) (1)

where yi represents the true label for the input xi and λ
is a hyperparameter that balances the supervised loss and
the distillation loss. The supervised loss Lsup is the task-
specific alignment error between the network prediction and
annotation. For image classification [15, 47, 53, 57], this is
typically cross-entropy loss, while for object detection [9,
40], it includes bounding box regression. The distillation loss
Ldistill is the mimic error of the student network towards the
teacher network, typically implemented as KL divergence
between student and teacher outputs [31].

3.2. Discriminative and Consistent Distillation
We develop an objective function that ensures both discrim-
inative and structurally consistent representations between
the teacher’s output zTi and the student’s output zSi . This
objective combines a contrastive loss, which discriminatively
aligns representations, with a consistency regularization term
that preserves structural relationships in the feature space.
The objective function is defined as:

Lkd(z
T
i , z

S
i ) = Lcontrast(z

T
i , z

S
i ) + α · Lconsist(z

T
i , z

S
i ) (2)

where α is a hyperparameter that balances the contrastive
loss Lcontrast for discriminative learning and the consistency
regularization term Lconsist for preserving structural relation-
ships.

3



Discriminative distillation. In our approach, we employ
contrastive learning to align teacher and student represen-
tations at the instance level. This process creates similarity
between representations of the same input while pushing
apart those from different inputs [62]. Through this discrim-
inative mechanism, the student network learns to mirror the
teacher’s ability to distinguish between distinct data points.

Instance contrastive learning [63] extends class-wise su-
pervision to its logical extreme by treating each individual
instance as its own class. However, this creates a practical
challenge: with the number of ”classes” matching the num-
ber of training instances, implementing a traditional softmax
layer becomes computationally intractable. We resolve this
challenge by implementing Noise Contrastive Estimation
(NCE) to approximate the softmax, enabling instance-level
discrimination without explicit class boundaries:

Lcontrast(z
T
i , z

S
i ) = − log

exp(ϕ(zSi , z
T
i )/τ + b)∑N

j=1 exp(ϕ(z
S
i , z

T
j )/τ + b)

(3)
where ϕ(u,v) = uTv/|u||v| represents the cosine similar-
ity function, with τ serving as the temperature parameter, b
as a bias parameter, and N as the total number of negatives.
This formulation effectively transforms into a cross-entropy
loss, where each student representation zSi must identify its
corresponding teacher representation zTi among all other
teacher representations in the batch. The objective essen-
tially becomes a classification task: student embeddings
must ”classify” their matching teacher embeddings correctly,
with the normalized similarities acting as logits and posi-
tive pair indices as class labels. The parameters τ and b
provide fine-grained control over this classification process,
determining its sharpness and scale respectively.

Consistent distillation. The consistency loss regularizes
the student model to maintain the structural relationships in
the teacher model’s representations. Unlike the contrastive
term, which operates at the instance level, the consistency
loss considers the distributional patterns. The student’s distri-
bution is defined as the similarity between student’s instance
i and all other instances j in the batch, processed through a
softmax layer:

pSi (j) =
exp(ϕ(zSi , z

T
j )/τ + b)∑N

k=1 exp(ϕ(z
S
i , z

T
k )/τ + b)

(4)

Similarly for the teacher:

pTi (j) =
exp(ϕ(zTi , z

S
j )/τ + b)∑N

k=1 exp(ϕ(z
T
j , z

S
k )/τ + b)

(5)

To achieve this, we adopt a relational consistency ap-
proach, which preserves the distributional patterns captured

by the teacher model across instances. By aligning the
pairwise relationships between instances in the student and
teacher embeddings, the model maintains the structural in-
tegrity of the teacher’s learned representations. Through
KL divergence between the student and teacher similarity
distributions, this approach matches not only individual rep-
resentations but also the spatial configuration of all instances
in the embedding space, ensuring robustness and transfer-
ability. The consistency regularization term ensures that the
student model learns to preserve the structural relationships
present in the teacher’s representations by minimizing the
KL divergence between these distributions:

Lconsist(z
T
i , z

S
i ) = DKL(p

S
i ∥pT

i ) =

N∑
j=1

pSi (j) log
pSi (j)

pTi (j)

(6)
where DKL denotes the KL divergence between the distribu-
tions pT

i and pS
i , ensuring that the student model maintains

similar relational patterns as the teacher model across differ-
ent inputs.

The combination of contrastive loss and consistency reg-
ularization ensures that the learned representations are both
discriminative and structurally consistent with the teacher
model. This is formalized by the following theorem:

Final objective. The final objective function, which in-
cludes the supervised loss and standard KL divergence, is
given by:

L = Lsup(yi, z
S
i )+λ ·Ldistill(z

T
i , z

S
i )+β ·Lkd(z

T
i , z

S
i ) (7)

where β is a hyperparameter that balances Lkd.

3.3. Implementation Details
We implement the objective using mini-batch stochastic gra-
dient descent. The representations zTi and zSi are obtained
from the last layer of the teacher and student models, re-
spectively. We further encode zTi and zSi using a projection
head to match the dimensions. The projection head is trained
using stochastic gradient descent as well. This ensures that
the representations from both models are compatible for
comparison and alignment. Additionally, we normalize the
outputs zTi and zSi before computing the loss, ensuring that
the representations lie on a unit hypersphere. This ensures
that the representations from both models are compatible for
comparison and alignment.

Memory-efficient sampling. Instead of using a large mem-
ory buffer for contrasting representations as in CRD [60],
we use the negative samples that naturally co-exist within
the batch. This approach significantly reduces memory re-
quirements while maintaining effective contrastive learning.
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Adaptive temperature scaling. Contrary to contrastive
learning objectives that use a constant temperature parameter,
we parameterize the temperature using exp(τ) where τ is
a learnable parameter, along with a learnable bias b. For a
batch of normalized embeddings zSi and zTi , we compute
the similarity matrix through:

ℓij = ϕ(zSi , z
T
j ) · exp(τ) + b (8)

where ϕ(u,v) = uTv/|u||v| is implemented efficiently as
a normalized matrix multiplication. The exponential param-
eterization ensures the temperature remains positive while
allowing unconstrained optimization of τ , which is clamped
to [0, τmax] for numerical stability. The learnable bias b pro-
vides an additive degree of freedom that helps adjust the logit
scale. This adaptive approach allows the model to automati-
cally tune the contrast level and logit scaling during training,
leading to more robust knowledge transfer compared to fixed
hyperparameter approaches.

4. Experiments
We evaluate our DCD framework in the KD task for model
compression of a large network to a smaller one, similar to
[60]. This method aligns with common practices in the field,
ensuring a fair comparison between different techniques.

4.1. Experimental Setup
We implement DCD in PyTorch following the implementa-
tion of CRD [60]. The detailed algorithm of DCD is provided
in the supplementary material.

Datasets. We conduct experiments on four popular
datasets for model compression: (1) CIFAR-100 [37] con-
tains 50,000 training images with 500 images per class and
10,000 test images. (2) ImageNet ILSVRC-2012 [18] in-
cludes 1.2 million images from 1,000 classes for training
and 50,000 for validation. (3) STL-10 [17] consists of a
training set of 5,000 labeled images from 10 classes and
100,000 unlabeled images, and a test set of 8,000 images. (4)
Tiny ImageNet [18] comprises 200 classes, each with 500
training images and 50 validation images.

Setup. We experiment with student-teacher combinations
of different capacities, such as ResNet [27] or Wide ResNet
(WRN) [68], VGG [58], MobileNet [56], and ShuffleNet
[43, 71] (more details are described in the supplementary
material). We set α = 0.5 and β = 1 and ablate both α and
β in the supplementary material. The hyperparameter λ is
set to 1.0 for the KL divergence loss to maintain consistency
with [7, 8, 60] (we also ablate λ in the supplementary mate-
rial). Both the student and teacher outputs are projected to
a 128-dimensional space using a projection head consisting
of a single linear layer, followed by ℓ2 normalization. The

projection layer, beyond matching dimensions, plays a cru-
cial role in KD by implicitly encoding relational information
from previous samples [46]. We empirically set τmax = 10.0.
More details on the training procedures can be found in the
supplementary material.

Comparison. We compare our approach to the following
state-of-the-art methods: (1) KD [31]; (2) FitNets [55]; (3)
AT [67]; (4) SP [61]; (5) CC [52]; (6) VID [1]; (7) RKD
[50]; (8) PKT [51]; (9) AB [30]; (10) FT [34]; (11) FSP [65];
(12) NST [33]; (13) CRD [60]; (14) OFD [29]; (15) WSLD
[72]; (16) IPWD [49]. In the supplementary material, we
include additional methods.

4.2. Results on CIFAR-100
Table 1 and Table 2 provide a comprehensive comparison
of top-1 accuracies across various KD methods for both
identical and differing architectures between student and
teacher models on the CIFAR-100 dataset (extended com-
parison with more state-of-the-art methods is included in
the supplementary material). Specifically, Table 1 focuses
on scenarios where the student and teacher share the same
architecture, while Table 2 explores settings with differing
architectures. Our proposed method, DCD, and its combi-
nation with KD, consistently achieve superior performance
compared to other distillation objectives, including the origi-
nal KD. Our method surpasses the teacher network’s perfor-
mance in both same-architecture (WRN-40-2 to WRN-16-2)
and cross-architecture (WRN-40-2 to ShuffleNet-v1) scenar-
ios, achieving accuracy gains of 0.45% and 0.90%, respec-
tively (see 1). As shown in the rightmost column of both
tables, DCD, when combined with KD, achieves the high-
est average improvement over the baseline student model,
with +2.82% for same-architecture scenarios and +5.25%
for cross-architecture scenarios. The strong performance of
both CRD and DCD validates the effectiveness of contrastive
learning objectives in knowledge distillation, with our adap-
tive approach showing consistent improvements over the
memory bank-based CRD method.

4.3. Results on ImageNet
Table 3 showcases the top-1 accuracy of student networks
that were trained using various distillation methods on Im-
ageNet. The results demonstrate the effectiveness of our
method on large-scale datasets, highlighting its ability to
distill knowledge from complex models and enhance the
performance of student networks. Our approach achieves
competitive results, surpassing KD and attaining state-of-the-
art performance in ResNet-50 to ResNet-18 distillation. Our
approach also shows improvement across different architec-
tures, demonstrating its effectiveness in various distillation
scenarios. DCD with KD consistently outperforms the stan-
dard KD method across all teacher-student combinations.
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Table 1. Test top-1 accuracy (%) of student networks on CIFAR-100, comparing various distillation methods. The values in bold indicate
the maximum of each column while underlined values mark the second best. ∆ represents the mean accuracy improvement (%) over the
baseline student model.

Teacher WRN-40-2 WRN-40-2 resnet-56 resnet-110 resnet-110 resnet-32x4 VGG-13
∆Student WRN-16-2 WRN-40-1 resnet-20 resnet-20 resnet-32 resnet-8x4 VGG-8

Teacher 75.61 75.61 72.34 74.31 74.31 79.42 74.64 -
Student 73.26 71.98 69.06 69.06 71.14 72.50 70.36 0.00
KD [31] 74.92 73.54 70.66 70.67 73.08 73.33 72.98 +1.69
FitNet [55] 73.58 72.24 69.21 68.99 71.06 73.50 71.02 +0.32
AT [67] 74.08 72.77 70.55 70.22 72.31 73.44 71.43 +1.06
SP [61] 73.83 72.43 69.67 70.04 72.69 72.94 72.68 +0.99
CC [52] 73.56 72.21 69.63 69.48 71.48 72.97 70.81 +0.40
VID [1] 74.11 73.30 70.38 70.16 72.61 73.09 71.23 +1.07
RKD [50] 73.35 72.22 69.61 69.25 71.82 71.90 71.48 +0.18
PKT [51] 74.54 73.45 70.34 70.25 72.61 73.64 72.88 +1.48
AB [30] 72.50 72.38 69.47 69.53 70.98 73.17 70.94 +0.20
FT [34] 73.25 71.59 69.84 70.22 72.37 72.86 70.58 +0.45
FSP [65] 72.91 n/a 69.95 70.11 71.89 72.62 70.33 +0.41
NST [33] 73.68 72.24 69.60 69.53 71.96 73.30 71.53 +0.67
CRD [60] 75.48 74.14 71.16 71.46 73.48 75.51 73.94 +2.54
CRD+KD [60] 75.64 74.38 71.63 71.56 73.75 75.46 74.29 +2.48
OFD [29] 75.24 74.33 70.38 n/a 73.23 74.95 73.95 +2.30
WSLD [72] n/a 73.74 71.53 n/a 73.36 74.79 n/a +2.19
IPWD [49] n/a 74.64 71.32 n/a 73.91 76.03 n/a +2.81
DCD (ours) 74.99 73.69 71.18 71.00 73.12 74.23 73.22 +1.72
DCD+KD (ours) 76.06 74.76 71.81 72.03 73.62 75.09 73.95 +2.82

Table 2. Test top-1 accuracy (%) of student networks on CIFAR-100 involving students and teachers from different architectures, using
various distillation methods. The values in bold indicate the maximum of each column while underlined values mark the second best. ∆
represents the mean accuracy improvement (%) over the baseline student model.

Teacher VGG-13 ResNet-50 ResNet-50 ResNet-32x4 ResNet-32x4 WRN-40-2
∆Student MobileNet-v2 MobileNet-v2 VGG-8 ShuffleNet-v1 ShuffleNet-v2 ShuffleNet-v1

Teacher 74.64 79.34 79.34 79.42 79.42 75.61 -
Student 64.60 64.60 70.36 70.50 71.82 70.50 0.00
KD [31] 67.37 67.35 73.81 74.07 74.45 74.83 +3.25
FitNet [55] 64.14 63.16 70.69 73.59 73.54 73.73 +1.08
AT [67] 59.40 58.58 71.84 71.73 72.73 73.32 -0.80
SP [61] 66.30 68.08 73.34 73.48 74.56 74.52 +2.98
CC [52] 64.86 65.43 70.25 71.14 71.29 71.38 +0.50
VID [1] 65.56 67.57 70.30 73.38 73.40 73.61 +1.91
RKD [50] 64.52 64.43 71.50 72.28 73.21 72.21 +0.96
PKT [51] 67.13 66.52 73.01 74.10 74.69 73.89 +2.83
AB [30] 66.06 67.20 70.65 73.55 74.31 73.34 +2.12
FT [34] 61.78 60.99 70.29 71.75 72.50 72.03 -0.51
NST [33] 58.16 64.96 71.28 74.12 74.68 76.09 +1.15
CRD [60] 69.73 69.11 74.30 75.11 75.65 76.05 +4.43
CRD+KD [60] 69.94 69.54 74.58 75.12 76.05 76.27 +4.69
OFD [29] 69.48 69.04 n/a 75.98 76.82 75.85 +4.83
WSLD [72] n/a 68.79 73.80 75.09 n/a 75.23 +4.24
IPWD [49] n/a 70.25 74.97 76.03 n/a 76.44 +5.43
DCD (ours) 68.35 67.39 73.85 74.26 75.26 74.98 +3.62
DCD+KD (ours) 69.77 70.03 74.08 76.01 76.95 76.51 +5.25
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Table 3. Test top-1 (%) on ImageNet validation test using various
distillation methods. The table compares students and teachers of
the same and different architecture. The values in bold indicate the
maximum of each column while underlined values mark the second
best.

Teacher ResNet-34 ResNet-50 ResNet-50
Student ResNet-18 ResNet-18 MobileNet
Teacher 73.31 76.16 76.16
Student 69.75 69.75 69.63
KD [31] 70.67 71.29 70.49
AT [67] 71.03 71.18 70.18
SP [61] 70.62 71.08 n/a
CC [52] 69.96 n/a n/a
VID [1] n/a 71.11 n/a
RKD [50] 70.40 n/a 68.50
AB [30] n/a n/a 68.89
FT [34] n/a n/a 69.88
FSP [65] 70.58 n/a n/a
NST [33] 70.29 n/a n/a
CRD [60] 71.17 71.25 69.07
OFD [29] 71.03 n/a 71.33
WSLD [72] 72.04 n/a 71.52
IPWD [49] 71.88 n/a 72.65
DCD (ours) 71.10 71.38 70.51
DCD+KD (ours) 71.71 71.65 71.55

4.4. Capturing Inter-class Correlations

Cross-entropy loss ignores the correlations among class log-
its in a teacher network, often leading to suboptimal knowl-
edge transfer. By employing ”soft targets”, distillation meth-
ods such as those described by [31] have successfully cap-
tured these correlations, enhancing student learning. Figure 3
evaluates the effectiveness of various distillation approaches
on the CIFAR-100 KD task using WRN-40-2 as the teacher
and WRN-40-1 as the student. Specifically, we compare
students trained without distillation, with attention transfer
[67], with KL divergence [31], and with our proposed DCD
method. Our results demonstrate that DCD achieves close
correlation alignment between teacher and student logits, as
evidenced by the minimal differences in their correlation
matrices. However, compared to CRD [60], our method
achieves less optimal matching, though it still significantly
enhances learning efficiency and lowers error rates. The
smaller discrepancies between teacher and student logits
clearly indicate that the DCD objective captures a substan-
tial amount of correlation structure in the logit, resulting in
lower error rates, although it is surpassed slightly by CRD
in achieving the closest match. Moreover, our method also
enhances representation learning as it employs a contrastive
objective.

(a) Student: vanilla (b) Student: KD [31]

(c) Student: AT [67] (d) Student: DCD (ours)

Figure 3. Comparison of correlation matrix differences between
teacher and student logits across various distillation methods on the
CIFAR-100 task. Subfigures show results for (a) students trained
without distillation, (b) with KL divergence [31], (c) with attention
transfer (AT) [67], and (d) with our DCD method, highlighting bet-
ter matching between student’s and teacher’s correlations. Results
have been re-implemented according to [60].

4.5. Transferability of Representations

Our research focuses on transferring knowledge from a
teacher network to a student network while learning repre-
sentations that embody general knowledge applicable across
various tasks and datasets. To investigate this, we employ
a distillation process where a WRN-40-2 teacher network
transfers its learned representations to a WRN-16-2 stu-
dent network, which can either be trained directly from the
CIFAR-100 dataset or through distillation. In our experi-
ments, the student network functions as a fixed feature ex-
tractor, processing images from STL-10 and Tiny ImageNet,
both resized to 32×32. To assess the generalizability of these
representations, we train a linear classifier on top of the last
feature layer to perform 10-way classification for STL-10
and 200-way classification for Tiny ImageNet. The effec-
tiveness of different distillation methods in enhancing the
transferability of these representations is detailed in Table 4.
Our results indicate that the DCD method, both standalone
and in combination with KD, significantly outperforms all
other distillation methods in improving the transferability
of learned representations across different datasets. This
superior transferability suggests that DCD encourages the
student to learn more general and robust features, which
are less overfitted to the specific training dataset and more
applicable to diverse visual recognition tasks.
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Teacher Student KD AT FitNet CRD CRD+KD DCD DCD+KD

CIFAR-100→STL-10 68.6 69.7 70.9 70.7 70.3 71.6 72.2 71.2 72.5
CIFAR-100→Tiny ImageNet 31.5 33.7 33.9 34.2 33.5 35.6 35.5 35.0 36.2

Table 4. Test top-1 accuracy (%) of WRN-16-2 (student) distilled from WRN-40-2 (teacher). In this setup, the representations learned from
the CIFAR-100 dataset are transferred to the STL-10 and Tiny ImageNet datasets. The network is frozen, and a linear classifier is trained on
the last feature layer to perform classification with 10 classes (STL-10) or 200 classes (Tiny ImageNet). The values in bold indicate the
maximum of each row.

(a) Same-architecture distillation (b) Cross-architecture distillation

Figure 4. Ablation results on CIFAR-100 comparing DCD variants. (a) Results for same-architecture pairs, where teacher and student share
network architecture. (b) Results for cross-architecture pairs, where teacher and student are from different architectures. Three configurations
are analyzed: a discriminative-only loss (α = 0), fixed temperature scaling with consistency regularization (α = 0.5, τ = 0.07, b = 0), and
our proposed method with consistency regularization and trainable temperature parameters (α = 0.5, trainable τ and b).

4.6. Ablation Study

To examine the effectiveness of consistency regularization
and temperature scaling, we conduct ablation studies with
two DCD variants in both Figure 4a and Figure 4b. First,
we evaluate a pure discriminative variant (α = 0) without
consistency regularization. Then, we test adding consistency
regularization (α = 0.5) with fixed temperature parameters
(τ = 0.07, b = 0). The results demonstrate that incorporat-
ing both consistency regularization and trainable temperature
scaling yields the best performance, with improvements of
up to 0.62% and 0.69% over the discriminative-only variant
in same-architecture and cross-architecture scenarios, respec-
tively. Additionally, removing the trainable temperature and
bias parameters leads to a decrease in performance. This sug-
gests that adaptive temperature scaling plays a crucial role in
maximizing the benefits of consistency regularization during
knowledge distillation. Additional ablation studies on the
loss coefficients α, β, and λ are provided in the supplemen-
tary material. Our method demonstrates robust performance
across different values of α and β due to the adaptive tem-
perature scaling mechanism with trainable parameters τ and
b, which automatically tunes the contrast level and logit scal-
ing during training. Following prior work [7, 8, 60], we set
λ = 1.0 as the default value.

5. Conclusions

We have presented DCD (Discriminative and Consistent
Distillation), a knowledge distillation method that combines
contrastive learning with consistency regularization to im-
prove the traditional KD process. Our method achieves state-
of-the-art performance through memory-efficient in-batch
negative sampling and adaptive temperature scaling, elimi-
nating the need for large memory banks while automatically
tuning contrast levels during training. Through extensive
experimentation across CIFAR-100, ImageNet, STL-10, and
Tiny ImageNet datasets, we have demonstrated significant
improvements over existing methods, achieving 20.31% rel-
ative improvement over the original KD, and 73.87% when
combined with KD. Unlike previous methods such as CRD
that require large memory banks or WSLD and IPWD that fo-
cus solely on instance discrimination, our approach achieves
superior performance while being more memory-efficient
and capturing both local and global structural information.
The effectiveness of DCD has been validated in both same-
architecture and cross-architecture scenarios, with student
models in several cases exceeding their teachers’ perfor-
mance, particularly in WRN-40-2 to WRN-16-2 and WRN-
40-2 to ShuffleNet-v1 configurations. We hope this work
will inspire future research in knowledge distillation.
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