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Abstract

Knowledge Distillation (KD) aims to transfer knowledge
from a large teacher model to a smaller student model. While
contrastive learning has shown promise in self-supervised
learning by creating discriminative representations, its ap-
plication in knowledge distillation remains limited and fo-
cuses primarily on discrimination, neglecting the structural
relationships captured by the teacher model. To address
this limitation, we propose Discriminative and Consistent
Distillation (DCD), which employs a contrastive loss along
with a consistency regularization to minimize the discrep-
ancy between the distributions of teacher and student rep-
resentations. Our method introduces learnable temperature
and bias parameters that adapt during training to balance
these complementary objectives, replacing the fixed hyperpa-
rameters commonly used in contrastive learning approaches.
Through extensive experiments on CIFAR-100 and ImageNet
ILSVRC-2012, we demonstrate that DCD achieves state-
of-the-art performance, with the student model sometimes
surpassing the teacher’s accuracy. Furthermore, we show
that DCD'’s learned representations exhibit superior cross-
dataset generalization when transferred to Tiny ImageNet
and STL-10'.

1. Introduction

Knowledge Distillation (KD) has emerged as a prominent
technique for model compression, enabling the transfer of
knowledge from large, high-capacity teacher models to more
compact student models [33]. This approach is particularly
relevant today, as state-of-the-art vision models in tasks such
as image classification [21, 48], object detection [44, 60],
and semantic segmentation [10, 1 1] continue to grow in size
and complexity. While these large models achieve impres-
sive performance, their computational demands make them
impractical for real-world applications [23, 39], leading prac-
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Figure 1. Overview of DCD. (a) Discriminative learning through
contrastive distillation encourages student features (solid blue) to
differentiate between instances by pulling them closer to their cor-
responding teacher features (transparent blue) while pushing away
from other instances as negative samples (black dots). (b) Struc-
tural consistency through consistency regularization preserves the
distributional relationship patterns captured by the teacher model
by aligning the student and teacher feature similarities (represented
by dotted lines) through KL divergence minimization.

titioners to seek more efficient alternatives through model
compression techniques [5, 59].

The representation learning capabilities of neural net-
works play a crucial role in their performance [4, 41]. In
the context of KD, while the original approach [33] focused
on transferring knowledge through logit outputs, subsequent
work has emphasized the importance of intermediate feature
representations [56, 61, 67, 74]. These intermediate repre-
sentations capture rich structural information and hierarchi-
cal features that are essential for robust model performance
[38, 77]. Recent advances in KD have explored various ways
to transfer this representational knowledge, including atten-
tion transfer [74], correlation congruence [58], and relational
knowledge distillation [56].

Contrastive learning has recently revolutionized self-
supervised representation learning [13, 30], demonstrating
its effectiveness in learning discriminative features without
labels. This success has inspired its adoption in KD frame-
works [22, 66]. However, existing contrastive distillation
approaches face several limitations: they often require large
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memory banks to store negative samples [06], rely on fixed
hyperparameters that limit their adaptability [13], and may
not fully preserve the structural relationships captured by
the teacher model [67]. Furthermore, the focus on discrim-
ination alone can lead to suboptimal knowledge transfer,
as it neglects the importance of maintaining consistent rep-
resentational patterns between teacher and student models
[58, 66].

To address these limitations, we propose Discriminative
and Consistent Distillation (DCD), an approach that com-
bines contrastive learning with consistency regularization to
ensure both discriminative power and structural consistency
in the student’s representations (see Figure 1). Our method
eliminates the need for memory banks by leveraging in-batch
negative samples and introduces learnable temperature and
bias parameters that dynamically adjust during training, en-
abling more flexible and efficient knowledge transfer. This
adaptive approach allows the student to better capture both
instance-level discriminative features and global structural
patterns from the teacher, leading to more robust and gener-
alizable representations [38].

Our contributions are twofold:

1. We propose an approach that combines contrastive learn-
ing with consistency regularization to ensure both dis-
criminative and structurally consistent representations.
Our method eliminates the need for memory banks and
introduces learnable parameters that dynamically adjust
during training, enabling more efficient knowledge trans-
fer than existing approaches.

2. We demonstrate the effectiveness of our approach through
extensive experiments on standard benchmarks, showing
significant improvements in both accuracy and robustness.
DCD outperforms other methods, achieving a 20.31%
relative improvement” over the original KD. When com-
bined with KD, it shows a 73.87% relative improvement
over the original KD.

The rest of this paper is organized as follows. Section 2 re-
views related work in knowledge distillation and contrastive
learning. Section 3 details our proposed methodology. Sec-
tion 4 presents our experimental setup and results, and Sec-
tion 5 concludes the paper.

2. Related Work

Our method combines contrastive learning with knowledge
distillation by adding consistency regularization.
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2.1. Knowledge Distillation

The original knowledge distillation work by [33] introduced
transferring knowledge through softened logit outputs us-
ing temperature scaling in the softmax. Similar to [33], our
method uses temperature scaling but learns the optimal tem-
perature during training for better knowledge transfer.

Logit-based methods. Several methods have improved
logit-based distillation through techniques like label decou-
pling [81], instance-specific label smoothing [73], proba-
bility reweighting [55], and normalizing logits before soft-
max and KL divergence [65]. Some works focus on dy-
namic temperature adjustment [42] and separate learning
of response-based and feature-based distillation [79]. Ad-
ditional improvements include transformations for better
teacher-student alignment [80] and methods for knowledge
transfer from stronger teachers [35]. Unlike existing meth-
ods such as [42] that use fixed temperature schedules and
MLPs, our approach introduces truly learnable temperature
parameters that adapt during training, making it more flexi-
ble and efficient.

Feature-based methods. The work by [61] used inter-
mediate feature hints to guide student learning, while [74]
aligned attention maps between teacher and student. Sev-
eral methods have explored structural relationships: [58]
preserved feature space relationships, [45] ensured func-
tional consistency, and [25] transferred class-level attention
information. The method by [56] transferred mutual rela-
tions between data examples. Recent works have introduced
cross-stage connection paths [12], direct reuse of teacher’s
classifier [8], and many-to-one representation matching [47].
Contrastive Representation Distillation (CRD) [66] used con-
trastive learning to maximize mutual information between
representations but needed large memory buffers. Com-
pared to [66], our approach uses efficient in-batch sam-
pling and adds structural consistency, making it more practi-
cal. Our method also differs from previous approaches like
[35, 57, 58, 67] in how we define and preserve structural
relationships.

Architecture-aware methods. Recent studies have exam-
ined how network architecture affects distillation success.
Some works developed meta-learning for architecture search
[19], training-free student architecture selection [20], and
graph-based architecture adaptation [50]. Methods by [28]
and [52] addressed distillation between different architec-
tures through unified feature spaces and intermediate net-
works respectively. These approaches aim to optimize not
just the distillation process but also the underlying network
structures to achieve better knowledge transfer.



2.2. Contrastive Learning

Contrastive methods in self-supervised learning have proven
effective for learning robust representations by maximizing
mutual information [34, 68]. These methods transform un-
supervised learning into a classification problem, building
on foundational work in metric learning [16, 27] to distin-
guish between positive and negative samples. The theoretical
foundations [2, 26] show that such objectives maximize a
lower bound on mutual information, crucial for meaning-
ful representations. Recent advances using momentum en-
coders [30], stronger augmentations [ 13], and methods that
eliminate negative samples [24] have further improved self-
supervised learning. Additionally, recent strategies explore
invariance regularizers [54], while others prevent model col-
lapse through redundancy reduction [76] or regularization
[3]. Some approaches achieve this by eliminating negative
samples through asymmetric Siamese structures or normal-
ization [6, 14, 24]. Our method combines instance-level
discrimination [70, 71] with an consistency constraint, en-
suring the student learns both discriminative features and
preserves the teacher’s structural knowledge. Furthermore,
our approach does not rely on fixed negative samples or
momentum encoders [51]; instead, it employs a dynamic
method that adapts to the model’s current state during train-
ing. Our method shares the theoretical underpinnings of
mutual information maximization but extends this frame-
work to include explicit structural preservation, providing a
more comprehensive approach to knowledge transfer.

3. Methodology

This section presents our methodology to improve the ef-
ficiency and accuracy of KD. Our method, Discriminative
and Consistent Distillation (DCD), focuses on learning rep-
resentations that are both discriminative through contrastive
learning and structurally consistent with the teacher model
through a consistency regularization. Our method ensures
that the student model learns to differentiate between differ-
ent instances while preserving the distributional relationships
captured by the teacher model. Figure | shows an overview
of the proposed method in the latent space.

3.1. Preliminaries

KD involves transferring knowledge from a high-capacity
teacher neural network, denoted a f”', to a more compact
student neural network f°. Consider z; as the input to these
networks, typically an image. We represent the outputs at the
penultimate layer (just before the final classification layer, or
logits) as z] = f7(z;) and z7 = f°(x;) for the teacher and
student models, respectively. The primary objective of KD is
to enable the student model to approximate the performance
of the teacher model. The overall distillation process can be
mathematically expressed as:

L= Lop(yi 27) + X Laisin (2] 27 (D

where y; represents the true label for the input z; and A
is a hyperparameter that balances the supervised loss and
the distillation loss. The supervised loss Ly, is the task-
specific alignment error between the network prediction and
annotation. For image classification [15, 53, 59, 63], this is
typically cross-entropy loss, while for object detection [9,
46], it includes bounding box regression. The distillation loss
Lgisinn 1S the mimic error of the student network towards the
teacher network, typically implemented as KL divergence
between student and teacher outputs [33].

3.2. Discriminative and Consistent Distillation

We develop an objective function that ensures both discrim-
inative and structurally consistent representations between
the teacher’s output z!" and the student’s output z;. This
objective combines a contrastive loss, which discriminatively
aligns representations, with a consistency regularization term
that preserves structural relationships in the feature space.
The objective function is defined as:

[’kd(z;‘ra zzS) = ﬁcontrast(z;ra Zf) + - [’consist(zzra Z?) (2)

where « is a hyperparameter that balances the contrastive
loss Leconrast for discriminative learning and the consistency
regularization term Lqysis¢ fOr preserving structural relation-
ships.

Discriminative distillation. In our approach, we employ
contrastive learning to align teacher and student represen-
tations at the instance level. This process creates similarity
between representations of the same input while pushing
apart those from different inputs [68]. Through this discrim-
inative mechanism, the student network learns to mirror the
teacher’s ability to distinguish between distinct data points.
Instance contrastive learning [70] extends class-wise su-
pervision to its logical extreme by treating each individual
instance as its own class. However, this creates a practical
challenge: with the number of classes” matching the num-
ber of training instances, implementing a traditional softmax
layer becomes computationally intractable. We resolve this
challenge by implementing Noise Contrastive Estimation
(NCE) to approximate the softmax, enabling instance-level
discrimination without explicit class boundaries:
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where ¢(u, v) = u'v/|u||v]| represents the cosine similar-
ity function, with 7 serving as the temperature parameter, b




as a bias parameter, and NN as the total number of negatives.
This formulation effectively transforms into a cross-entropy
loss, where each student representation z; must identify its
corresponding teacher representation z. among all other
teacher representations in the batch. The objective essen-
tially becomes a classification task: student embeddings
must “classify” their matching teacher embeddings correctly,
with the normalized similarities acting as logits and posi-
tive pair indices as class labels. The parameters 7 and b
provide fine-grained control over this classification process,
determining its sharpness and scale respectively.

Consistent distillation. The consistency loss regularizes
the student model to maintain the structural relationships in
the teacher model’s representations. Unlike the contrastive
term, which operates at the instance level, the consistency
loss considers the distributional patterns. The student’s distri-
bution is defined as the similarity between student’s instance
¢ and all other instances j in the batch, processed through a
softmax layer:

_ exp(9(zF,2])/m +b)
Sy exp((zf,2]) /7 +b)

Similarly for the teacher:

) = ;rXp(sb(Zf, z;7)/7 +) )
>no1 exp((z],23) /T +b)

To achieve this, we adopt a relational consistency ap-
proach, which preserves the distributional patterns captured
by the teacher model across instances. By aligning the
pairwise relationships between instances in the student and
teacher embeddings, the model maintains the structural in-
tegrity of the teacher’s learned representations. Through
KL divergence between the student and teacher similarity
distributions, this approach matches not only individual rep-
resentations but also the spatial configuration of all instances
in the embedding space, ensuring robustness and transfer-
ability. The consistency regularization term ensures that the
student model learns to preserve the structural relationships
present in the teacher’s representations by minimizing the
KL divergence between these distributions:
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where Dy, denotes the KL divergence between the distribu-

tions p7 and p?, ensuring that the student model maintains

similar relational patterns as the teacher model across differ-
ent inputs.

The combination of contrastive loss and consistency reg-

ularization ensures that the learned representations are both

N Sy.
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discriminative and structurally consistent with the teacher
model. This is formalized by the following theorem:

Final objective. The final objective function, which in-
cludes the supervised loss and standard KL divergence, is
given by:

L= Loy, 25)+ X\ Laisin(zr 25 )+ B Lya(z] ,25) (7)
where [ is a hyperparameter that balances Lygq.

3.3. Implementation Details

We implement the objective using mini-batch stochastic gra-
dient descent. The representations z/ and z: are obtained
from the last layer of the teacher and student models, re-
spectively. We further encode z! and z7 using a projection
head to match the dimensions. The projection head is trained
using stochastic gradient descent as well. This ensures that
the representations from both models are compatible for
comparison and alignment. Additionally, we normalize the
outputs z! and z; before computing the loss, ensuring that
the representations lie on a unit hypersphere. This ensures
that the representations from both models are compatible for
comparison and alignment.

Memory-efficient sampling. Instead of using a large mem-
ory buffer for contrasting representations as in CRD [66],
we use the negative samples that naturally co-exist within
the batch. This approach significantly reduces memory re-
quirements while maintaining effective contrastive learning.
Our in-batch negative sampling eliminates the need to main-
tain and update large memory banks that store thousands of
feature vectors, which can consume significant GPU mem-
ory It also simplifies the implementation by removing the
complexity of memory bank management, including chal-
lenges related to feature staleness and queue maintenance
[30]. Unlike memory banks that may contain stale features
from earlier training iterations, our approach always uses the
most recent representations within the current batch.

Learnable temperature. Contrary to contrastive learning
objectives that use a constant temperature parameter, we
parameterize the temperature using exp(7) where 7 is a
learnable parameter, along with a learnable bias b. For a
batch of normalized embeddings z? and z!, we compute
the similarity matrix through:

li; = (27, z;[) -exp(7) +b (8)

where ¢(u, v) = u?'v/|u||v| is implemented efficiently as
a normalized matrix multiplication. The exponential param-
eterization ensures the temperature remains positive while



allowing unconstrained optimization of 7, which is clamped
to [0, Tmax] for numerical stability. The learnable bias b pro-
vides an additive degree of freedom that helps adjust the logit
scale. This adaptive approach allows the model to automati-
cally tune the contrast level and logit scaling during training,
leading to more robust knowledge transfer compared to fixed
hyperparameter approaches.

4. Experiments

We evaluate our DCD framework in the KD task for model
compression of a large network to a smaller one, similar to
[66]. Beyond classification, we also validate our method’s
effectiveness on the more challenging object detection task.

4.1. Experimental Setup

We implement DCD in PyTorch following the implementa-
tion of [66].

Datasets. We conduct experiments on four popular
datasets for model compression: (1) CIFAR-100 [40] con-
tains 50,000 training images with 500 images per class and
10,000 test images. (2) ImageNet ILSVRC-2012 [18] in-
cludes 1.2 million images from 1,000 classes for training
and 50,000 for validation. (3) STL-10 [17] consists of a
training set of 5,000 labeled images from 10 classes and
100,000 unlabeled images, and a test set of 8,000 images. (4)
Tiny ImageNet [18] comprises 200 classes, each with 500
training images and 50 validation images. (5) MS-COCO
[43] contains 118,000 training images and 5,000 validation
images with annotations for object detection.

Setup. We experiment with student-teacher combinations
of different capacities, such as ResNet [29] or Wide ResNet
(WRN) [75], VGG [64], MobileNet [62], and ShuffleNet
[49, 78]. We set « = 0.5 and § = 1. The hyperparame-
ter A is set to 1.0 for the KL divergence loss to maintain
consistency with [7, 8, 66]. Both the student and teacher
outputs are projected to a 128-dimensional space using a
projection head consisting of a single linear layer, followed
by /5 normalization. We empirically set 7m,x = 10.0.

Comparison. We compare our approach to the following
state-of-the-art methods: (1) KD [33]; (2) FitNets [61]; (3)
AT [74]; (4) SP [67]; (5) CC [58]; (6) VID [1]; (7) RKD
[56]; (8) PKT [57]; (9) AB [32]; (10) FT [37]; (11) FSP [72];
(12) NST [36]; (13) CRD [66]; (14) OFD [31]; (15) WSLD
[81]; (16) IPWD [55]; (17) CTKD [42].

Computational cost. While CRD’s memory bank requires
approximately 8MB per class (16k features x128 dimen-
sions x4 bytes), DCD’s in-batch sampling needs only
0.13MB total (256 x 128 x 4 bytes). This efficiency extends

to training time - on a 4-GPU machine, DCD completes
ImageNet training in approximately 72 hours compared to
CRD’s 88 hours, representing an 18% reduction in training
time.

4.2. Main Results

We benchmark our method on image classification and object
detection tasks.

Results on CIFAR-100. Table 1 compares top-1 accura-
cies of various KD methods on CIFAR-100. Our DCD+KD
achieves superior performance, surpassing the teacher net-
work by +0.45% in same-architecture (WRN-40-2 to WRN-
16-2) and +0.90% in cross-architecture (WRN-40-2 to
ShuffleNet-v1) scenarios. The method shows significant
improvements over baseline students: +2.82% for same-
architecture and +5.25% for cross-architecture pairs, out-
performing memory bank-based CRD. DCD alone performs
slightly below CRD, which uses a large 16k-feature memory
bank. However, DCD with KD achieves better results by
combining complementary objectives: KD’s soft targets pro-
vide direct class-level supervision through logit-space KL
divergence, while DCD ensures feature-space consistency.

Transferability of representations. Table 2 compares the
top-1 test accuracy of WRN-16-2 (student) distilled from
WRN-40-2 (teacher) and evaluated on STL-10 and Tiny Im-
ageNet. The student is trained on CIFAR-100, either directly
or via distillation, and serves as a frozen feature extractor
with a linear classifier. We assess how well different distil-
lation methods enhance feature transferability. Our results
show that DCD, both standalone and combined with KD,
significantly improves transferability.

Results on ImageNet. Table 3 presents the top-1 accuracy
of student networks trained with various distillation methods
on ImageNet. The results highlight the effectiveness of our
approach in large-scale settings, demonstrating its ability to
distill knowledge from complex models and enhance student
performance. Our method consistently surpasses KD and
achieves competitive results across different architectures.

Results on COCQO. Table 4 shows our performance on
the MS-COCO object detection task. Following [79], we
adopt Faster R-CNN [60] with Feature Pyramid Network
(FPN) [44] as our detection framework. We evaluate two
teacher-student scenarios: ResNet-101 to ResNet-50 and
ResNet-50 to MobileNet-V2. For ResNet-101 to ResNet-50
distillation, DCD+KD achieves 39.01 AP and 60.07 AP,
surpassing the baseline by +1.08 AP. When distilling from
ResNet-50 to MobileNet-v2, we obtain substantial improve-
ments of +3.81 AP over the baseline, demonstrating effective
knowledge transfer even across different architectures.



Table 1. Test top-1 accuracy (%) on CIFAR-100 of student networks trained with various distillation methods across different teacher-student
architectures. Architecture abbreviations: W: WideResNet, R: ResNet, MN: MobileNet, SN: ShuffleNet. Results adapted from [66]. Results
for our method are averaged over five runs.

Same architecture Different architecture

Teacher W-40-2 W-40-2 R-56 R-110 R-110 R-32x4 VGG-13 VGG-13 R-50 R-50 R-32x4 R-32x4 W-40-2
Student W-16-2 W-40-1 R-20 R-20 R-32 R-8x4 VGG-§ MN-v2 MN-v2 VGG-8 SN-vl SN-v2 SN-vl
Teacher 75.61 75.61 72.34 7431 7431 7942 T74.64 74.64 7934 7934 7942 7942 75.61
Student 73.26 7198 69.06 69.06 71.14 72.50 7036 64.60 64.60 70.36 70.50 71.82 70.50
KD [33] 74.92 73.54 70.66 70.67 73.08 73.33 7298 67.37 6735 73.81 74.07 7445 74.83
FitNet [61] 73.58 7224 69.21 68.99 71.06 73.50 71.02 64.14 63.16 70.69 73.59 73.54 73.73
AT [74] 74.08 7277 70.55 70.22 7231 7344 71.43 59.40 5858 71.84 7T1.73 7273 73.32
SP [67] 73.83 7243 69.67 70.04 72.69 7294 7268 66.30 68.08 73.34 7348 74.56 74.52
CC [58] 73.56 7221 69.63 69.48 71.48 7297 70.81 64.86 6543 70.25 71.14 7129 71.38
VID [1] 74.11 73.30 70.38 70.16 72.61 73.09 71.23 6556 67.57 70.30 73.38 73.40 73.61

RKD [56] 73.35 7222 69.61 69.25 71.82 7190 7148 6452 6443 71.50 72.28 7321 7221

PKT [57] 74.54 7345 70.34 70.25 72.61 73.64 7288 67.13 66.52 73.01 74.10 74.69 73.89
AB [32] 72.50 7238 69.47 69.53 7098 73.17 7094 66.06 67.20 70.65 73.55 7431 73.34
FT [37] 73.25 71.59 69.84 70.22 72.37 72.86 70.58 61.78 60.99 70.29 71.75 72.50 72.03
FSP [72] 7291 n/a 69.95 70.11 71.89 72.62 7033 58.16 6496 71.28 74.12 74.68 76.09
CRD [66] 7548 74.14 71.16 71.46 73.48 75.51 7394 69.73 69.11 7430 75.11 75.65 76.05
CRD+KD [66] 75.64 74.38 71.63 71.56 73.75 7546 7429 6994 69.54 74.58 75.12 76.05 76.27
OFD [31] 7524 7433 70.38 n/a 7323 7495 7395 6948 69.04 n/a 7598 76.82 75.8

WSLD [81] n/a 73774 71.53 n/a 73.36 74.79 n/a n/a  68.79 73.80 75.09 n/a 7523
IPWD [55] n/a  74.64 7132 n/a 7391 76.03 n/a n/a 7025 7497 76.03 n/a 76.44
CTKD [42] 75.45 7393 71.19 70.99 73.52 n/a 73.52 6846 6847 n/a 74778 7531 75.78
DCD (ours) 74.99 73.69 71.18 71.00 73.12 7423 7322 6835 6739 73.85 7426 7526 7498
DCD+KD (ours) 76.06 74.76 71.81 72.03 73.62 75.09 7395 69.77 70.03 74.08 76.01 7695 76.51

Table 2. Test top-1 accuracy (%) of WRN-16-2 (student) distilled from WRN-40-2 (teacher). In this setup, the representations learned from
the CIFAR-100 dataset are transferred to the STL-10 and Tiny ImageNet datasets.

Teacher Student KD [33] AT [74] FitNet [61] CRD [66] CRD+KD [66] DCD DCD+KD

68.6  69.7 70.9 70.7 70.3 71.6 72.2 712 725
31.5 33.7 339 34.2 335 35.6 355 350  36.2

CIFAR-100—STL-10
CIFAR-100—Tiny ImageNet

4.3. Visualization t-SNE visualization. Figure 3 presents t-SNE [69] visu-
alizations of embeddings from WRN-40-2 (teacher) and
WRN-40-1 (student) on CIFAR-100. Compared to standard
training and [74], DCD better aligns student embeddings
with the teacher, preserving structural relationships in the
feature space. The preservation of semantic relationships be-
tween class clusters demonstrates our method’s effectiveness

in transferring the teacher’s knowledge organization.

We present comprehensive visualizations that analyze the
learned representations and knowledge transfer patterns
across different distillation approaches, providing qualitative
insights.

Inter-class correlations. Figure 2 evaluates the effective-
ness of distillation methods on the CIFAR-100 KD task
using WRN-40-2 (teacher) and WRN-40-1 (student). We

4.4. Ablation Study
compare models trained without distillation, with KL diver-

gence [33], with CRD [66], and our proposed DCD method.
DCD achieves strong correlation alignment between teacher
and student logits, reducing discrepancies in their correlation
matrices.

We analyze our method through ablation experiments pre-
sented in Figures 4 and 5. We first study the effects of
consistency regularization and temperature scaling, then in-
vestigate the sensitivity to hyperparameters «, 3, and A.



Table 3. Test top-1 accuracy (%) on ImageNet validation set for student networks trained with various distillation methods across different
teacher-student architectures. Results for our method are based on a single run.

Teacher Student KD [33] AT [74] SP [67] CC [58] RKD [56] CRD [66] DCD DCD+KD

ResNet-34—ResNet-18 73.31 69.75 70.67 71.03 70.62 69.96 70.40 71.17  71.10 7171
ResNet-50—ResNet-18 76.16 69.75 7129 71.18 71.08 n/a n/a 7125 71.38  71.65
ResNet-50—MobileNet-v2 76.16 69.63 7049 70.18 n/a n/a 68.50 69.07 7051 71.55

Table 4. Object detection performance on MS-COCO val2017 using Faster R-CNN with FPN backbone. We use mean Average Precision
(AP) and AP at IoU thresholds of 0.5 and 0.75 (APso, AP75). Results for our method are based on a single run.

ResNet-101 — ResNet-18 ResNet-101 — ResNet-50 ResNet-50 — MobileNet-v2
AP APs5 AP75 AP APs5 AP75 AP APs AP35

Teacher 42.04 6248 45.88 42.04 6248 45.88 40.22  61.02 43.81
Student 3326 53.61 35.26 3793 58.84 41.05 29.47 48.87 30.90
KD [33] 33.97 54.66 36.62 38.35 59.41 41.71 30.13  50.28 31.35
FitNet [74]  34.13 54.16 36.71 38.76  59.62 41.80 30.20 49.80 31.69
DCD (ours) 36.98 57.44 39.79 39.01 60.07 42.88 33.28 52.97 35.15

(a) Vanilla (b) KD [33] (¢) CRD [66] (d) CRD+KD [66] (e) DCD (ours) (f) DCD+KD (ours)
Mean: 0.24, Max: 1.66 Mean: 0.09, Max: 0.49 Mean: 0.23, Max: 1.56 Mean: 0.10, Max: 0.57 Mean: 0.22, Max: 1.59 Mean: 0.09, Max: 0.51

Method

Figure 2. Correlation matrix of the average logit difference between teacher and student logits on CIFAR-100. We use WRN-40-2 as the
teacher and WRN-40-1 as the student. Methods have been re-implemented according to [66].
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Figure 3. t-SNE visualizations of embeddings from teacher and student networks on CIFAR-100 (first 20 classes). We use WRN-40-2 as the
teacher and WRN-40-1 as the student. Methods have been re-implemented according to [66].

Ablation on DCD. To examine the effectiveness of con- adaptive temperature scaling contribute significantly to the
sistency regularization and temperature scaling, we conduct method’s performance.

comprehensive ablation studies on CIFAR-100, as shown in

Figure 4. Starting with a pure discriminative variant (o = 0),

we observe that adding consistency regularization with fixed Ablation on «. We then tested different values
temperature (o« = 0.5, 7 = 0.07, b = 0) improves perfor- for the loss coefficient o of Equation (2): o« =
mance across all architectures. Our proposed method with {0.01,0.1,0.3,0.5,0.7,1,2,5} while setting 3 = 1 and
trainable temperature parameters further enhances the re- A = 0. For all the following ablations we use WRN-40-2 as
sults, achieving improvements of up to +1.69% without teacher and WRN-16-2 as student on CIFAR-100. As shown
KD and +2.21% with KD over the baseline. These re- in Figure 5a, our method remains robust across changes in
sults demonstrate that both consistency regularization and «, with no significant difference in performance at low or

high values. This robustness can be attributed to the adaptive
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Figure 5. Ablation study results on CIFAR-100 using WRN-40-2 as the teacher and WRN-16-2 as the student. (a) Effect of the internal
DCD coefficient v in Equation (2). (b) Effect of DCD loss coefficient 3 in Equation (7). (c) Effect of loss coefficient A in Equation (7).

Results are averaged over five runs.

temperature scaling mechanism, which enables automatic
tuning of contrast level and logit scaling during training,
providing more stable knowledge transfer.

Ablation on 3. We varied § of Equation (7) from
B = 0.1 to 8 = 100, considering values of § =
{0.1,0.5,1,2,5,10,50,100} while fixing & = 0.5 and
A = 0. As illustrated in Figure 5b, extremely high /3 val-
ues cause significant degradation in performance due to the
overwhelming contribution of the DCD loss relative to other
loss terms. Very low values of /3 also lead to a slight de-
crease in performance. The optimal range for /3 is between
B = 0.5 and 8 = 10, suggesting that the DCD loss should
be weighted similarly to other loss terms for the best results.

Ablation on A. While )\ of Equation (7) is typically set
to A = 1.0 [7, 8, 66], we tested values from A = 0.1 to
A = 10, considering values of A = {0.1,0.5,1,2,5,10}.
For these experiments we fixed « = 0.5 and § = 1. As
shown in Figure 5c, performance remains stable across all
tested values, with the best results achieved at A = 1.0 (we
also found that higher values of A = 50 and A = 100 lead
to training collapse, not shown in figure). This confirms the

common practice of setting A = 1.0 in prior work is optimal.

5. Conclusions

We have presented DCD, a knowledge distillation method
that combines contrastive learning with consistency regular-
ization to improve the traditional KD process. Our method
achieves state-of-the-art performance through memory-
efficient in-batch negative sampling and adaptive temper-
ature scaling, eliminating the need for large memory banks
while automatically tuning contrast levels during training.
Through extensive experimentation across CIFAR-100, Im-
ageNet, COCO, STL-10, and Tiny ImageNet datasets, we
have demonstrated significant improvements over existing
methods. Unlike previous methods such as CRD [66] that
require large memory banks or WSLD [81] and IPWD [55]
that focus solely on instance discrimination, our approach
achieves superior performance while being more memory-
efficient and capturing both local and global structural in-
formation. The effectiveness of DCD has been validated
in both same-architecture and cross-architecture scenarios,
with student models in several cases exceeding their teachers’
performance. We hope this work will inspire future research
in knowledge distillation.
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