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Supplementary Material

6. Algorithm

Algorithm 1 provides the pseudo-code of DCD.

7. Implementation Details

We implement DCD in PyTorch following the implementa-
tion of CRD [25]1.

7.1. Baseline Methods

We compare our approach to the following state-of-the-art
methods from the literature: (1) Knowledge Distillation (KD)
[11]; (2) FitNets: Hints for Thin Deep Nets [22]; (3) Atten-
tion Transfer (AT) [29]; (4) Similarity-Preserving Knowl-
edge Distillation (SP) [26]; (5) Correlation Congruence (CC)
[21]; (6) Variational Information Distillation for Knowledge
Transfer (VID) [1]; (7) Relational Knowledge Distillation
(RKD) [19]; (8) Learning Deep Representations with Prob-
abilistic Knowledge Transfer (PKT) [20]; (9) Knowledge
Transfer via Distillation of Activation Boundaries Formed by
Hidden Neurons (AB) [10]; (10) Paraphrasing Complex Net-
work: Network Compression via Factor Transfer (FT) [13];
(11) A Gift from Knowledge Distillation: Fast Optimization,
Network Minimization and Transfer Learning (FSP) [28];
(12) Like What You Like: Knowledge Distill via Neuron
Selectivity Transfer (NST) [12]; (13) Contrastive Represen-
tation Distillation (CRD) [25]; (14) A Comprehensive Over-
haul of Feature Distillation (OFD); (15) Rethinking Soft La-
bels for Knowledge Distillation: A Bias-Variance Tradeoff
Perspective (WSLD) [32]; (16) Respecting Transfer Gap in
Knowledge Distillation (IPWD) [18]; (17) Knowledge Dis-
tillation via Softmax Regression Representation Learning
(SRRL) [27]; (18) Cross-Layer Distillation with Semantic
Calibration (SemCKD) [2]; (19) Distilling Knowledge via
Knowledge Review (ReviewKD) [5]; (20) Knowledge Dis-
tillation with the Reused Teacher Classifier (SimKD) [3];
(21) Searching A Fast Knowledge Distillation Process via
Meta Optimization (DistPro) [6]; (22) Knowledge Distilla-
tion via N-to-One Representation Matching (NORM) [14];
(23) Information Theoretic Representation (ITRD) [17]; (24)
Feature Kernel Distillation (FKD) [7]; (25) Complementary
Relation Contrastive Distillation (CRCD) [33]; (26) Distill-
ing Knowledge from Self-Supervised Teacher by Embedding
Graph Alignment (EGA) [16]; (27) Wasserstein Contrastive
Representation Distillation (WCoRD) [4].

1Available at: https : / / github . com / HobbitLong /
RepDistiller.

7.2. Network Architectures
We use the following network architectures as described
in [25]: (1) Wide Residual Network (WRN) [30], where
WRN-d-w represents a wide ResNet with depth d and width
factor w; (2) ResNet [8], where resnet-d represents a CIFAR-
style ResNet with 3 groups of basic blocks having 16, 32,
and 64 channels, respectively, and resnet-8 ×4 and resnet-
32 ×4 indicate a 4-times wider network with 64, 128, and
256 channels; (3) ResNet [8], where ResNet-d represents
an ImageNet-style ResNet with Bottleneck blocks and more
channels; (4) MobileNet-v2 [23], using a width multiplier of
0.5 in our experiments; (5) VGG [24], where the VGG net-
work used is adapted from its original ImageNet counterpart;
and (6) ShuffleNet-v1 [31] and ShuffleNet-v2 [15], which
are adapted for efficient training with input sizes of 32× 32.

7.3. Optimization
All methods evaluated in our experiments use SGD with
0.9 Nesterov momentum. For CIFAR-100, we initialize the
learning rate as 0.05, and decay it by 0.1 every 30 epochs
after the first 150 epochs until the last 240 epoch. For
MobileNet-v2, ShuffleNet-v1, and ShuffleNet-v2, we use
a learning rate of 0.01 as this learning rate is optimal for
these models in a grid search, while 0.05 is optimal for other
models. The batch size is set to 64 for CIFAR-100, and the
weight decay is set to 5× 10−4. For ImageNet2 , the initial
learning rate is set to 0.1 and then divided by 10 at the 30th,
60th, and 90th epochs of the total 120 training epochs. The
mini-batch size is set to 256, and the weight decay is set to
1× 10−4. All results are reported as means over three trials,
except for the results on ImageNet, which are reported in a
single trial.

8. Results
8.1. Extended Comparison with State-of-the-Art
Table 7 and Table 8 provide a comprehensive overview of
the top-1 accuracies of student networks trained with various
state-of-the-art distillation techniques across a wide range of
teacher-student architectural combinations. Our method ben-
efits from its simplicity, as it has no trainable parameters, and
the only hyperparameters involved are the loss coefficients.

8.2. Additional Inter-class Correlations
We present supplementary figures shown in Figure 4, which
demonstrate the effectiveness of the DCD method across
various student-teacher model architectures.

2Available at: https://www.image-net.org/.
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Algorithm 1 Pseudocode of DCD in a PyTorch-like style.

# f_T, f_S: teacher and student networks
# t_dim: The input feature dimension for the teacher
# s_dim: The input feature dimension for the student
# feat_dim: The projection feature space dimension
# N: batch size

class DCDLoss(nn.Module):
def __init__(self, s_dim, t_dim, feat_dim, init_tau=1.0, max_tau=10.0, init_b=0.0):

super(DCDLoss, self).__init__()
# learnable params
self.tau = nn.Parameter(torch.tensor(init_tau))
self.b = nn.Parameter(torch.tensor(init_b))

# embedding layer
self.embed_s = nn.Linear(s_dim, feat_dim)
self.embed_t = nn.Linear(t_dim, feat_dim)

def forward(self, f_s, f_t):
f_s = self.embed_s(f_s)
f_t = self.embed_t(f_t)

f_s = F.normalize(f_s, dim=1)
f_t = F.normalize(f_t, dim=1)

tau = self.tau.exp().clamp(0, self.max_tau)

# contrastive loss
logits = torch.mm(f_s, f_t.t()) * tau + self.b
labels = torch.arange(N)
contrastive_loss = F.cross_entropy(logits, labels)

# consistent loss
p1 = F.log_softmax(logits, dim=1)
p2 = F.softmax(logits, dim=0)
consistent_loss = F.kl_div(p1, p2)

return contrastive_loss + 0.5 * consistent_loss

9. Ablation Study
There are three main hyperparameters in our objective: the
internal DCD coefficient α, which balances the contrastive
and invariance losses within the DCD loss; the DCD loss
coefficient β, which balances the DCD loss with other loss
terms; and the loss coefficient λ, which is typically set to
1.0 but can be adjusted to affect the weighting of certain
components. We conduct an ablation study to analyze the
impact of these hyperparameters. For this study, we adopt
WRN-40-2 as the teacher and WRN-16-2 as the student.
Experiments are conducted on CIFAR-100, and the results
are shown in Figure 5.

Ablation on loss coefficient α. We tested different values
for α: 0.01, 0.1, 0.3, 0.5, 0.7, 1, 2, and 5. As shown in
Figure 5a, our method remains robust across changes in α,
with no significant difference in performance at low or high
values. This robustness can be attributed to the adaptive
temperature scaling mechanism, which enables automatic
tuning of contrast level and logit scaling during training,
providing more stable knowledge transfer.

Ablation on loss coefficient β. We varied β from 0.1 to
100, considering values of 0.1, 0.5, 1, 2, 5, 10, 50, and
100. As illustrated in Figure 5b, extremely high β values
cause significant degradation in performance due to the over-

whelming contribution of the DCD loss relative to other loss
terms. Very low values of β also lead to a slight decrease in
performance. The optimal range for β is between 0.5 and 10,
suggesting that the DCD loss should be weighted similarly
to other loss terms for the best results.

Ablation on loss coefficient λ. While λ is typically set to
1.0 [2, 3, 25], we tested values from 0.1 to 100, considering
values of 0.1, 0.5, 1, 2, 5, 10, 50, and 100. As shown
in Figure 5c, high values (i.e., λ = 50 and 100) lead to
collapsing training. Lower values, such as 0.5 to 1.0, have
similar performance.

10. Broader Impact

The presented research should be categorized as research
in the field of knowledge distillation. The primary goal
is to reduce computational demands, thereby lowering the
energy requirements of AI systems and contributing to more
sustainable technology deployment. However, this technique
also harbors risks, notably the potential to perpetuate existing
biases present in teacher models. Such biases could have
profound ethical implications, as in sensitive applications.
Furthermore, the versatility of the algorithms developed here
enables their application across a broad spectrum of vision-
related tasks, but this versatility also introduces the dual-use
dilemma, where the technology might yield both beneficial
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Table 7. Test top-1 accuracy (%) of student networks on CIFAR-100, comparing students and teachers of the same architecture using various
distillation methods. ↑ denotes outperformance over KD and ↓ denotes underperformance.

Teacher WRN-40-2 WRN-40-2 resnet-56 resnet-110 resnet-110 resnet-32x4 VGG-13
Student WRN-16-2 WRN-40-1 resnet-20 resnet-20 resnet-32 resnet-8x4 VGG-8
Teacher 75.61 75.61 72.34 74.31 74.31 79.42 74.64
Student 73.26 71.98 69.06 69.06 71.14 72.50 70.36
KD [11] 74.92 73.54 70.66 70.67 73.08 73.33 72.98
FitNet [22] 73.58 (↓) 72.24 (↓) 69.21 (↓) 68.99 (↓) 71.06 (↓) 73.50 (↑) 71.02 (↓)
AT [29] 74.08 (↓) 72.77 (↓) 70.55 (↓) 70.22 (↓) 72.31 (↓) 73.44 (↑) 71.43 (↓)
SP [26] 73.83 (↓) 72.43 (↓) 69.67 (↓) 70.04 (↓) 72.69 (↓) 72.94 (↓) 72.68 (↓)
CC [21] 73.56 (↓) 72.21 (↓) 69.63 (↓) 69.48 (↓) 71.48 (↓) 72.97 (↓) 70.81 (↓)
VID [1] 74.11 (↓) 73.30 (↓) 70.38 (↓) 70.16 (↓) 72.61 (↓) 73.09 (↓) 71.23 (↓)
RKD [19] 73.35 (↓) 72.22 (↓) 69.61 (↓) 69.25 (↓) 71.82 (↓) 71.90 (↓) 71.48 (↓)
PKT [20] 74.54 (↓) 73.45 (↓) 70.34 (↓) 70.25 (↓) 72.61 (↓) 73.64 (↑) 72.88 (↓)
AB [10] 72.50 (↓) 72.38 (↓) 69.47 (↓) 69.53 (↓) 70.98 (↓) 73.17 (↓) 70.94 (↓)
FT [13] 73.25 (↓) 71.59 (↓) 69.84 (↓) 70.22 (↓) 72.37 (↓) 72.86 (↓) 70.58 (↓)
FSP [28] 72.91 (↓) n/a 69.95 (↓) 70.11 (↓) 71.89 (↓) 72.62 (↓) 70.33 (↓)
NST [12] 73.68 (↓) 72.24 (↓) 69.60 (↓) 69.53 (↓) 71.96 (↓) 73.30 (↓) 71.53 (↓)
CRD [25] 75.48 (↑) 74.14 (↑) 71.16 (↑) 71.46 (↑) 73.48 (↑) 75.51 (↑) 73.94 (↑)
CRD+KD [25] 75.64 (↑) 74.38 (↑) 71.63 (↑) 71.56 (↑) 73.75 (↑) 75.46 (↑) 74.29 (↑)
OFD [9] 75.24 (↑) 74.33 (↑) 70.38 (↓) n/a 73.23 (↑) 74.95 (↑) 73.95 (↑)
WSLD [32] n/a 73.74 (↑) 71.53 (↑) n/a 73.36 (↑) 74.79 (↑) n/a
IPWD [18] n/a 74.64 (↑) 71.32 (↑) n/a 73.91 (↑) 76.03 (↑) n/a
SRRL [27] n/a 74.64 (↑) n/a n/a n/a 75.39 (↑) n/a
SemCKD [2] n/a 74.41 (↑) n/a n/a n/a 76.23 (↑) n/a
ReviewKD [5] 76.12 (↑) 75.09 (↑) 71.89 (↑) n/a 73.89 (↑) 75.63 (↑) 74.84 (↑)
SimKD [3] n/a 75.56 (↑) n/a n/a n/a 78.08 (↑) n/a
DistPro [6] 76.36 (↑) n/a 72.03 (↑) n/a 73.74 (↑) n/a n/a
NORM [14] 75.65 (↑) 74.82 (↑) 71.35 (↑) 71.55 (↑) 73.67 (↑) 76.49 (↑) 73.95 (↑)
NORM+KD [14] 76.26 (↑) 75.42 (↑) 71.61 (↑) 72.00 (↑) 74.95 (↑) 76.98 (↑) 74.46 (↑)
NORM+CRD [14] 76.02 (↑) 75.37 (↑) 71.51 (↑) 71.90 (↑) 73.81 (↑) 76.49 (↑) 73.58 (↑)
WCoRD [4] 75.88 (↑) 74.73 (↑) 71.56 (↑) 71.57 (↑) 73.81 (↑) 75.95 (↑) 74.55 (↑)
WCoRD+KD [4] 76.11 (↑) 74.72 (↑) 71.92 (↑) 71.88 (↑) 74.20 (↑) 76.15 (↑) 74.72 (↑)
CRCD [33] 76.67 (↑) 75.95 (↑) 73.21 (↑) 72.33 (↑) 74.98 (↑) 76.42 (↑) 74.97 (↑)
FKD [7] n/a n/a n/a n/a n/a 75.57 (↑) 73.78 (↑)
ITRD (corr) [17] 75.85 (↑) 74.90 (↑) 71.45 (↑) 71.77 (↑) 74.02 (↑) 75.63 (↑) 74.70 (↑)
ITRD (corr+mi) [17] 76.12 (↑) 75.18 (↑) 71.47 (↑) 71.99 (↑) 74.26 (↑) 76.19 (↑) 74.93 (↑)
DCD (ours) 74.99 (↑) 73.69 (↑) 71.18 (↑) 71.00 (↑) 73.12 (↑) 74.23 (↑) 73.22 (↑)
DCD+KD (ours) 76.06 (↑) 74.76 (↑) 71.81 (↑) 72.03 (↑) 73.62 (↑) 75.09 (↑) 73.95 (↑)

and adverse impacts. Thus, careful consideration is needed
when deploying these methods to ensure they align with
ethical guidelines and promote fairness in AI applications.
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Figure 4. Comparison of correlation matrix differences between teacher and student logits across varied student-teacher architectures on
the CIFAR-100 task: (a) S: WRN-16-2, T: WRN-40-2; (b) S: resnet-20, T: resnet-56; (c) S: resnet-20, T: resnet-110; (d) S: resnet-32,
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T: WRN-40-2.

(a) Effect of varying α (b) Effect of varying β (c) Effect of varying λ

Figure 5. Ablation study results on CIFAR-100 using WRN-40-2 as the teacher and WRN-16-2 as the student. (a) Effect of the internal
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on performance.
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