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Abstract

Knowledge Distillation (KD) is an effective method for
transferring knowledge from a large, well-trained teacher
model to a smaller, more efficient student model. Despite its
success, one of the main challenges in KD is ensuring the ef-
ficient transfer of complex knowledge while maintaining the
student’s computational efficiency. While contrastive learn-
ing methods typically push different instances apart and pull
similar ones together, applying such constraints to KD can
be too restrictive. Contrastive methods focus on instance-
level information, but lack attention to relationships between
different instances. We propose Relational Representation
Distillation (RRD), which improves knowledge transfer by
maintaining structural relationships between feature repre-
sentations rather than enforcing strict instance-level match-
ing. Specifically, our method employs sharpened distribu-
tions of pairwise similarities among different instances as a
relation metric, which is utilized to match the feature embed-
dings of student and teacher models. Our approach demon-
strates superior performance on CIFAR-100 and ImageNet
ILSVRC-2012, outperforming traditional KD and sometimes
even outperforms the teacher network when combined with
KD. It also transfers successfully to other datasets like
Tiny ImageNet and STL-10. Code is available at https:
//github.com/giakoumoglou/distillers.

1. Introduction
Knowledge Distillation (KD) is a technique that facilitates
the transfer of knowledge from a larger, well-trained model
(teacher) to a smaller, more efficient model (student). This
is achieved by minimizing the Kullback-Leibler (KL) diver-
gence between their outputs, allowing the student model to
approximate the performance of the teacher model while
maintaining lower computational complexity. This pro-
cess is particularly beneficial for deployment in resource-
constrained environments. A critical aspect of KD is rep-
resentation learning, which enables the student model to
acquire meaningful feature representations that capture the

underlying data distribution. Effective representation learn-
ing in KD can significantly boost the performance of the
student model across various domains, such as natural lan-
guage processing, computer vision, and speech recognition
[20, 28, 42]. Despite these advantages, a major challenge
in KD is the efficient transfer of complex knowledge from
the teacher to the student model. Ensuring that the student
model captures the abstract features and nuanced informa-
tion present in the teacher model, without the need for similar
computational capacity, remains a significant bottleneck.

Recent advancements in KD have increasingly focused
on capturing richer, more nuanced knowledge from teacher
models to improve the effectiveness and robustness of stu-
dent models. Relational methods emphasize the importance
of maintaining structural relationships between data points
by minimizing distance-wise, angle-wise, or pairwise sim-
ilarity losses [37, 47]. These approaches ensure that the
student model learns relational information that mirrors
the teacher’s representational geometry, thereby enhanc-
ing performance on downstream tasks. On the other hand,
probability-based methods and methods leveraging attention
mechanisms aim to align the internal feature distributions or
attention maps of the teacher and student models to ensure
a more targeted knowledge transfer [38, 54]. Contrastive
methods, particularly Contrastive Representation Distillation
(CRD), have introduced the use of memory banks and con-
trastive learning objectives to better preserve the teacher’s
representation space [46]. By employing contrastive losses
like InfoNCE [48], CRD maximizes the mutual information
between teacher and student features while using a memory
buffer of negative samples to encourage separation between
dissimilar representations. This framework allows the stu-
dent to achieve high fidelity to the teacher’s representation.
However, the explicit reliance on negative sampling can intro-
duce constraints that may limit flexibility in certain scenarios.
Additionally, some methods focus on directly aligning the
prediction relations or outputs of teacher and student models
using correlation-based losses or ℓ2 loss functions [21, 52].
While these methods have achieved notable success, there is
a growing interest in distillation techniques that balance the
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need for capturing relational structures without overly rigid
constraints.

Our proposed method, Relational Representation
Distillation (RRD), introduces a novel approach to address
these challenges by maintaining relational consistency be-
tween the teacher and student models. By leveraging a large
memory buffer of teacher samples to align their output distri-
butions, our method ensures consistent relational structures,
thereby enhancing the robustness and performance of the
student model.

Our contributions are threefold:

1. We introduce Relational Representation Distillation
(RRD), a KD method that leverages a memory buffer to
align the similarity distributions between teacher and stu-
dent outputs while maintaining structural relationships.

2. We validate the effectiveness of RRD through compre-
hensive testing on standard benchmarks, showcasing con-
siderable gains in both accuracy and robustness. RRD
surpasses other methods with a 23.68% relative improve-
ment1 over conventional KD. When integrated with KD,
it demonstrates a 68.66% relative improvement over stan-
dard KD.

3. We provide qualitative evidence through t-SNE visual-
izations, demonstrating that RRD effectively preserves
the spatial relationships in the embedding spaces of both
student and teacher models,

The rest of this paper is organized as follows. Section
2 reviews related work in KD and self-supervised learn-
ing. Section 3 details our proposed methodology. Section 4
presents our experimental setup and results, and Section 5
concludes the paper.

2. Related Work

Self-supervised learning. Self-supervised learning has
significantly impacted representation learning by leveraging
unlabeled data. Various pretext tasks have been proposed
to learn these representations, such as colorizing an image
[56], predicting a missing patch [39], estimating the rotation
angle [14], and solving jigsaw puzzles [35, 36]. Contrastive
methods further extend this concept by pulling together an
anchor and a ”positive” sample in the embedding space while
pushing apart the anchor from many ”negative” samples [24],
represented by frameworks such as [7–9, 17] and other vari-
ants [23, 51]. Differing from these, [58] introduces relational
self-supervised learning, which explores the relationships
between data points. These approaches have inspired various
KD methods, including our proposed method, which adapts

1Average relative improvement is calculated as:
1
N

∑N
i=1

AcciRRD−AcciKD
AcciKD−Accivan

, where AcciRRD, AcciKD, and Accivan repre-

sent the accuracies of RRD, KD, and vanilla training of the i-th student
model, respectively [46].

relational consistency from self-supervised learning to the
KD framework.

Knowledge distillation. The work by [20] laid the founda-
tion for knowledge distillation (KD) by introducing a method
for transferring knowledge from larger teacher models to
smaller student models, ensuring that the student retains
strong generalization capabilities. This process uses tem-
perature scaling in the teacher’s softmax output to produce
”soft targets” that are easier for the student to learn from.
Many methods extend this approach by adding loss functions
that complement standard cross-entropy and KL-divergence
losses. Examples include utilizing intermediate represen-
tations or ”hints” to guide student learning [42], aligning
attention maps between teacher and student [54], and pre-
serving relational information between samples [47].

Feature-based knowledge distillation. Feature-based KD
methods focus on transferring knowledge through intermedi-
ate representations or feature alignments. These approaches
often involve aligning the spatial and channel-wise attention
maps of teacher and student models, enabling the student to
better mimic the teacher’s feature extraction [54]. Other tech-
niques directly align the teacher and student’s correlation
structures [40], or employ variational inference to optimize
knowledge transfer [1]. Additionally, relational approaches
maintain structural relationships in the feature space, ensur-
ing the student model captures essential relational knowledge
[37]. Methods preserving internal dynamics across layers
have also shown to be effective in sustaining feature-based
information during KD [19, 38].

Contrastive knowledge distillation. Contrastive KD
methods combine self-supervised contrastive learning with
KD principles to improve knowledge transfer. A notable
approach is CRD [46], which applies contrastive loss to
maximize mutual information between teacher and student
representations. CRD uses a memory buffer [50] to main-
tain a large set of negative samples, which enables effective
contrastive learning and enhances the quality of knowledge
transfer. These contrastive approaches aim to preserve the
teacher’s feature space, resulting in better student model
performance in KD tasks.

Relational and structural knowledge distillation. Sev-
eral KD techniques focus on preserving structural and re-
lational information in the student model. Methods like
relational KD capture relationships between data points, en-
abling the student model to learn the structural organiza-
tion of the teacher’s feature space [37]. Techniques like
using orthogonal matrices for intra-batch feature similar-
ity [32] and aligning pairwise feature kernels [15] further
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enhance relational knowledge transfer. This category also
includes approaches that optimize relational information
among outputs, such as preserving relations between pre-
dictions [21], aligning teacher and student features using ℓ2
loss [52], and maintaining alignment in the student’s predic-
tion space. Cross-stage connections [6] and direct reuse of
the teacher’s classifier [3] contribute to better alignment in
learned representations, while differentiable meta-learning
optimizes layer-wise transfer [13].

Our method, Relational Representation Distillation
(RRD), differentiates itself from state-of-the-art methods
by focusing on maintaining relational consistency and align-
ment between the teacher and student models. Like many
knowledge distillation techniques, RRD introduces an addi-
tional loss function to the training objective [2, 5, 21, 31, 32,
46, 52]. Similar to CRD [46], RRD employs a large memory
buffer of teacher samples. However, unlike CRD, which
uses instance discrimination, RRD relaxes this constraint
to focus on aligning the relational structures of the output
distributions. This approach diverges from traditional KD
methods that often rely on direct alignment of logits or inter-
mediate features. By leveraging pairwise similarities instead
of explicit negative instances, RRD not only enhances the
robustness and performance of the student model but also
provides a more flexible and scalable solution for KD.

3. Methodology
This section presents our methodology to improve the
efficiency and accuracy of KD. Our method, Relational
Representation Distillation (RRD), improves KD efficiency
by maintaining structural relationships between feature rep-
resentations using a memory buffer of teacher samples to
align their output distributions. Figure 1 shows an overview
of the proposed RRD method.

3.1. Preliminaries

KD involves transferring knowledge from a high-capacity
teacher neural network, denoted as fT , to a more compact
student neural network, fS . Consider xi as the input to these
networks, typically an image. We represent the outputs at the
penultimate layer (just before the final classification layer,
or logits) as zTi = fT (xi) and zSi = fS(xi) for the teacher
and student models, respectively. The primary objective of
KD is to enable the student model to approximate the perfor-
mance of the teacher model while leveraging the student’s
computational efficiency. The overall distillation process can
be mathematically expressed as:

L = Lsup(yi, z
S
i ) + λ · Ldistill(z

T
i , z

S
i ) (1)

where yi represents the true label for the input xi and λ is
a hyperparameter that balances the supervised loss and the
distillation loss. The loss Lsup is the alignment error between

the network prediction and the annotation. For example, in
the image classification task [10, 33, 41, 44], it is normally
a cross-entropy loss. For object detection [4, 27], it includes
bounding box regression as well. The loss Ldistill is the mimic
error of the student network towards a pre-trained teacher
network, typically implemented as KL divergence between
student and teacher outputs [20].

3.2. Relational Representation Distillation

Traditional contrastive learning uses instance discrimination
and relies on (K +1)-softmax classification, where different
instances are pushed apart, and matching instances are ex-
pected to have identical features. This can lead to the class
collision problem where semantically similar instances are
forced apart even when they should maintain some similar-
ity. Applying such properties to KD imposes overly strict
constraints, where a contrastive loss encourages the repre-
sentations from the teacher and student models for the same
input data to be similar, while simultaneously pushing apart
representations from different data inputs:

Lcontrastive(z
T
i , z

S
i ) = − log

exp(ϕ(zTi , z
S
i )/τ)∑M

k=1 exp(ϕ(z
S
i , zk)/τ)

(2)

where ϕ is a similarity function, typically the dot product
between ℓ2 normalized embeddings ϕ(u,v) = uT ·v/||u|| ·
||v||, τ is a temperature parameter, and M is the number of
negative samples typically sampled from a memory buffer
Q = {zk}Mk=1.

Our method relaxes this contrastive objective by not en-
forcing strict instance-level matching. Instead of explicitly
pushing different instances apart, we focus on preserving
pairwise similarity relationships between instances. This re-
laxation allows the student more flexibility in learning from
the teacher where different instances can maintain varying
degrees of similarity rather than being strictly separated, and
teacher-student pairs do not need to have identical features.

Specifically, to maintain structural relationships between
instances, given an input image xi, and the outputs zTi =
fT (xi) and zSi = fS(xi) for the teacher and student models,
respectively, we calculate the similarities between zTi and the
j-th instance of the memory bank as ϕ(zTi , zj). A softmax
layer can be adopted to process the calculated similarities,
which then produces a similarity distribution:

pT
i (j) =

exp(ϕ(zTi , zj)/τt)∑M
k=1 exp(ϕ(z

T
i , zk)/τt)

(3)

where τt is the temperature parameter for the teacher net-
work. At the same time, we can calculate the relationship
between zSi and the j-th instance of the memory bank as
ϕ(zSi , zj). The resulting similarity distribution is:
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Figure 1. Overview of the RRD method. The student network processes input xi to produce embeddings zSi , while the teacher network,
represented as frozen by a snowflake, processes the same input to generate embeddings zTi . The embeddings are stored in a memory buffer
to align their output distributions via softmax layers. The relationship between the teacher and student models is reinforced by leveraging the
stored embeddings to guide the training of the student network.

pS
i (j) =

exp(ϕ(zSi , zj)/τs)∑M
k=1 exp(ϕ(z

S
i , zk)/τs)

(4)

where τs is a different temperature parameter for the student
network. We set τs < τt to create sharpened distributions for
the student model. That way the student’s similarity distribu-
tion pS

i becomes more peaked around the highest similarity
values compared to the teacher’s distribution pT

i . This sharp-
ening helps the student focus on learning the most significant
relationships while maintaining flexibility in capturing sec-
ondary similarities, thus avoiding the class collision problem
that occurs with strict instance discrimination.

We align these distributions by minimizing their KL di-
vergence, a relation metric to quantify the similarity between
the teacher and student distributions:

Lrelational(z
T
i , z

S
i ) = DKL(p

T
i ∥ pS

i ) = H(pT
i ,p

S
i )−H(pT

i )
(5)

where DKL denotes the KL divergence between pT
i and

pS
i . Since pT

i will be used as a target, the gradient will be
clipped here to avoid model collapse, thus we only minimize
the cross-entropy term H(pT

i ,p
S
i ) in our implementation.

The quality of the target similarity distribution pT
i is

crucial for reliable and stable training, which we achieve
by maintaining a large memory buffer to store feature em-
beddings from teacher batches. The structural relationships
between the teacher and student models are preserved by
aligning the similarity distributions of their outputs using the
KL divergence. To ensure the representations lie on a unit
hypersphere, we normalize the outputs zTi and zSi before
computing the loss. Furthermore, Lrelational is computed by
encoding zTi and zSi through a projection head that matches
their dimensions, ensuring compatibility for comparison and
alignment. This projection head also facilitates knowledge

transfer by implicitly encoding relational information from
previous samples [30].

The final objective function, which includes the super-
vised loss and standard KL divergence, is given by:

L = Lsup(yi, z
S
i )+λ ·Ldistill(z

T
i , z

S
i )+β ·Lrelational(z

T
i , z

S
i )
(6)

where β is a hyperparameter that balances the proposed loss
Lrelational.

4. Experiments
We evaluate our RRD framework in the KD task of model
compression of a large network to a smaller one [46]. This
approach is consistent with the standard practice in the field,
allowing for fair comparison across methods.

4.1. Experimental Setup

We implement DCD in PyTorch following the implementa-
tion of CRD [46].

Datasets. (1) CIFAR-100 [26] contains 50,000 training
images with 500 images per class and 10,000 test images. (2)
ImageNet ILSVRC-2012 [12] includes 1.2 million images
from 1,000 classes for training and 50,000 for validation.
(3) STL-10 [11] consists of a training set of 5,000 labeled
images from 10 classes and 100,000 unlabeled images, and
a test set of 8,000 images. (4) Tiny ImageNet [12] has 200
classes, each with 500 training images and 50 validation
images.

Setup. We experiment on CIFAR-100 and ImageNet with
student-teacher combinations of various capacity, such as
ResNet [16] or Wide ResNet (WRN) [55], VGG [45], Mo-
bileNet [43], and ShuffleNet [29, 57] (more details about
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the network architectures are described in the supplementary
material). We use M = 16384 samples (we ablate M in
Section 4.7) and set the temperature parameter of the student
to τs = 0.04 and of the teacher to τt = 0.07 (we also ablate
both temperatures in Section 4.7). We set λ = 1 and β = 1
(we study the impact of β in Section 4.7). Both the student
and teacher outputs are projected to a 128-dimensional space.
We use a projection head of a single linear layer, followed by
ℓ2 normalization. We train for 240 epochs for CIFAR-100
and 120 for ImageNet. More details on the training details
are described in the supplementary material.

Comparison. We compare our approach to the following
state-of-the-art methods: (1) KD [20]; (2) FitNets [42]; (3)
AT [54]; (4) SP [47]; (5) CC [40]; (6) VID [1]; (7) RKD
[37]; (8) PKT [38]; (9) AB [19]; (10) FT [25]; (11) FSP [53];
(12) NST [22]; (13) CRD [46]; (14) OFD [18]; (15) WSLD
[59]; (16) IPWD [34]. In the supplementary material, we
include additional methods.

Role of the projection layer. Following [30], we use a
projection head consisting of a single linear layer, followed
by ℓ2 normalization. The projection layer is not merely
a dimension-matching tool but plays a crucial role in KD.
It effectively transfers knowledge by implicitly encoding
relational information from previous samples [30].

4.2. Results on CIFAR-100

Table 1 and Table 2 present the top-1 accuracies of stu-
dent networks trained using different distillation techniques
across various teacher-student architectural pairings. Table 1
examines pairings where both student and teacher models
share similar architectural styles, while Table 2 focuses on
cross-architecture distillations. Our proposed loss consis-
tently outperforms the conventional KD technique. While
the standalone performance of our method is comparable to
CRD, its integration with KD not only achieves higher accu-
racies but in some cases, surpasses the performance of the
teacher networks, such as in the distillation of WRN-40-2 to
ShuffleNet-v1. The enhanced performance of our distillation
method can be credited to multiple factors that collectively
improve the transfer of knowledge from the teacher to the
student model. Our approach uses a unique loss function
that complements KD’s primary focus on matching the soft-
ened output logits of the teacher and student. We introduce
an additional layer of representational alignment that en-
sures not only the final outputs but also the intermediate
feature representations of the student closely match those
of the teacher. This dual focus allows the student model to
mimic the teacher’s outputs and develop more robust and
generalizable internal representations.

4.3. Results on ImageNet

Table 3 presents the top-1 accuracies of student networks
trained with various distillation techniques across different
teacher-student architectural pairings. These findings affirm
the scalability of our RRD method on large datasets like Im-
ageNet, highlighting its ability to effectively distill complex
models. Our approach achieves competitive results, surpass-
ing KD across all tested architectures. Furthermore, RRD
shows improvement across different architectures, demon-
strating its effectiveness in various distillation scenarios.
The combination of RRD with KD further improves results
among the compared techniques in most cases.

4.4. Transferability of Representations

Our study investigates knowledge transfer from a larger
teacher network (WRN-40-2) to a smaller student network
(WRN-16-2), aiming to develop versatile representations
for various tasks and datasets. We apply this technique by
having the student network learn directly from CIFAR-100
or via distillation. The student network is employed as a
static feature extractor for STL-10 and Tiny ImageNet im-
ages, adjusted to 32 × 32 resolution. We evaluate feature
adaptability by training a linear classifier on the final feature
layer for classifications with 10 categories (STL-10) and 200
categories (Tiny ImageNet). We document the impact of
distillation approaches on feature transferability in Table 4.
Our findings reveal that, except for FitNet, all distillation
techniques significantly improve feature transferability on
both datasets. Notably, while the teacher network achieves
highest performance on CIFAR-100, its features show least
effective transfer, likely due to training data specificity. Con-
versely, the student network using RRD and KD distillation
not only equates to the teacher’s CIFAR-100 performance but
also surpasses it in transferability, showing improvements of
3.1% in STL-10 and Tiny ImageNet.

4.5. Capturing Inter-class Correlations

Cross-entropy loss overlooks the relationships among class
logits in a teacher network, often resulting in less effec-
tive knowledge transfer. Distillation techniques that use
”soft targets”, such as those described by [20], have success-
fully captured these relationships, improving student model
performance. Figure 2 assesses the effectiveness of differ-
ent distillation methods on the CIFAR-100 KD task using
WRN-40-2 as the teacher and WRN-40-1 as the student. We
compare students trained without distillation, with attention
transfer [54], with KL divergence [20], and with our pro-
posed RRD method. Our findings show that RRD achieves
close alignment between teacher and student logits, as evi-
denced by reduced differences in their correlation matrices.
While RRD does not match CRD [46] in terms of exact
correlation alignment, it significantly enhances learning ef-
ficiency and reduces error rates. The smaller discrepancies
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Table 1. Test top-1 accuracy (%) of student networks on CIFAR-100, comparing students and teachers of the same architecture using various
distillation methods. The values in bold indicate the maximum of each column and underlined values mark the second best.

Teacher WRN-40-2 WRN-40-2 resnet-56 resnet-110 resnet-110 resnet-32x4 VGG-13
Student WRN-16-2 WRN-40-1 resnet-20 resnet-20 resnet-32 resnet-8x4 VGG-8
Teacher 75.61 75.61 72.34 74.31 74.31 79.42 74.64
Student 73.26 71.98 69.06 69.06 71.14 72.50 70.36
KD [20] 74.92 73.54 70.66 70.67 73.08 73.33 72.98
FitNet [42] 73.58 72.24 69.21 68.99 71.06 73.50 71.02
AT [54] 74.08 72.77 70.55 70.22 72.31 73.44 71.43
SP [47] 73.83 72.43 69.67 70.04 72.69 72.94 72.68
CC [40] 73.56 72.21 69.63 69.48 71.48 72.97 70.81
VID [1] 74.11 73.30 70.38 70.16 72.61 73.09 71.23
RKD [37] 73.35 72.22 69.61 69.25 71.82 71.90 71.48
PKT [38] 74.54 73.45 70.34 70.25 72.61 73.64 72.88
AB [19] 72.50 72.38 69.47 69.53 70.98 73.17 70.94
FT [25] 73.25 71.59 69.84 70.22 72.37 72.86 70.58
FSP [53] 72.91 n/a 69.95 70.11 71.89 72.62 70.33
NST [22] 73.68 72.24 69.60 69.53 71.96 73.30 71.53
CRD [46] 75.48 74.14 71.16 71.46 73.48 75.51 73.94
CRD+KD [46] 75.64 74.38 71.63 71.56 73.75 75.46 74.29
OFD [18] 75.24 74.33 70.38 n/a 73.23 74.95 73.95
WSLD [59] n/a 73.74 71.53 n/a 73.36 74.79 n/a
IPWD [34] n/a 74.64 71.32 n/a 73.91 76.03 n/a
RRD (ours) 75.33 73.55 70.71 70.72 73.10 74.48 73.99
RRD+KD (ours) 75.66 74.67 72.19 71.74 73.54 75.08 74.32

Table 2. Test top-1 accuracy (%) of student networks on CIFAR-100 involving students and teachers from different architectures, using
various distillation methods. The values in bold indicate the maximum of each column and underlined values mark the second best.

Teacher VGG-13 ResNet-50 ResNet-50 ResNet-32x4 ResNet-32x4 WRN-40-2
Student MobileNet-v2 MobileNet-v2 VGG-8 ShuffleNet-v1 ShuffleNet-v2 ShuffleNet-v1
Teacher 74.64 79.34 79.34 79.42 79.42 75.61
Student 64.60 64.60 70.36 70.5 71.82 70.5
KD [20] 67.37 67.35 73.81 74.07 74.45 74.83
FitNet [42] 64.14 63.16 70.69 73.59 73.54 73.73
AT [54] 59.40 58.58 71.84 71.73 72.73 73.32
SP [47] 66.30 68.08 73.34 73.48 74.56 74.52
CC [40] 64.86 65.43 70.25 71.14 71.29 71.38
VID [1] 65.56 67.57 70.30 73.38 73.40 73.61
RKD [37] 64.52 64.43 71.50 72.28 73.21 72.21
PKT [38] 67.13 66.52 73.01 74.10 74.69 73.89
AB [19] 66.06 67.20 70.65 73.55 74.31 73.34
FT [25] 61.78 60.99 70.29 71.75 72.50 72.03
NST [22] 58.16 64.96 71.28 74.12 74.68 76.09
CRD [46] 69.73 69.11 74.30 75.11 75.65 76.05
CRD+KD [46] 69.94 69.54 74.97 75.12 76.05 76.27
OFD [18] 69.48 69.04 n/a 75.98 76.82 75.85
WSLD [59] n/a 68.79 73.80 75.09 n/a 75.23
IPWD [34] n/a 70.25 74.58 76.03 n/a 76.44
RRD (ours) 67.93 68.84 74.01 74.11 74.80 74.98
RRD+KD (ours) 69.98 69.13 74.26 76.83 76.83 76.44
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Table 3. Test top-1 (%) on ImageNet validation set using various
distillation methods. The table compares students and teachers of
the same and different architecture. The values in bold indicate the
maximum of each column while underlined values mark the second
best.

Teacher ResNet-34 ResNet-50 ResNet-50
Student ResNet-18 ResNet-18 MobileNet
Teacher 73.31 76.16 76.16
Student 69.75 69.75 69.63
KD [20] 70.67 71.29 70.49
AT [54] 71.03 71.18 70.18
SP [47] 70.62 71.08 n/a
CC [40] 69.96 n/a n/a
VID [1] n/a 71.11 n/a
RKD [37] 70.40 n/a 68.50
AB [19] n/a n/a 68.89
FT [25] n/a n/a 69.88
FSP [53] 70.58 n/a n/a
NST [22] 70.29 n/a n/a
CRD [46] 71.17 71.25 69.07
OFD [18] 71.03 n/a 71.33
WSLD [59] 72.04 n/a 71.52
IPWD [34] 71.88 n/a 72.65
RRD (ours) 71.22 71.33 70.66
RRD+KD (ours) 71.40 71.51 71.83

between teacher and student logits indicate that the RRD
objective captures a substantial portion of the correlation
structure in the logits, resulting in lower error rates, though
CRD achieves a slightly closer match.

4.6. Visualization of t-SNE Embeddings

We provide t-SNE [49] visualizations to compare the em-
beddings generated by various KD methods and the teacher
network on the CIFAR-100 dataset. Figure 3 displays the
embeddings from the teacher network, a WRN-40-2, and
the student network, WRN-40-1, under standard training
as well as distillation using AT and RRD where we limit
the dataset to the first 10 classes of CIFAR-100 to offer a
clearer understanding of the embedding space. We observe
improved consistency in the embedding distributions be-
tween the teacher and student networks, indicating that RRD
effectively transfers the knowledge of the teacher’s feature
space to the student. Our relational consistency approach
ensures that the spatial relationships in the embedding spaces
of both the student and teacher models are preserved. This
alignment not only enhances the student’s performance but
also maintains the integrity of the feature representations
learned by the teacher.

(a) Student: vanilla (b) Student: KD [20]

(c) Student: AT [54] (d) Student: RRD (ours)

Figure 2. Comparison of correlation matrix differences between
teacher and student logits across various distillation methods on the
CIFAR-100 task. Subfigures show results for (a) students trained
without distillation, (b) with KL divergence [20], (c) with attention
transfer (AT) [54], and (d) with our RRD method, highlighting bet-
ter matching between student’s and teacher’s correlations. Results
have been re-implemented according to [46].

(a) Teacher (b) Student: vanilla

(c) Student: AT [54] (d) Student: RRD (ours)

Figure 3. t-SNE visualizations of embeddings from the teacher
network and student networks trained using different distillation
techniques on the first 10 classes of the CIFAR-100 dataset: (a)
teacher, (b) student trained without distillation, (c) student trained
with attention transfer (AT) [54], and (d) student trained with RRD.

4.7. Ablation Study

There are two main hyperparameters in our objective: the
number of negative samples M in the memory buffer Q of

7



Table 4. Test top-1 accuracy (%) of WRN-16-2 (student) distilled from WRN-40-2 (teacher). In this setup, the representations learned from
the CIFAR-100 dataset are transferred to the STL-10 and Tiny ImageNet datasets. The network is frozen, and a linear classifier is trained on
the last feature layer to perform classification with 10 classes (STL-10) or 200 classes (Tiny ImageNet). Results adapted from [46]. The
values in bold indicate the maximum of each row.

Teacher Student KD AT FitNet CRD CRD+KD RRD RRD+KD

CIFAR-100→STL-10 68.6 69.7 70.9 70.7 70.3 71.6 72.2 71.2 71.4
CIFAR-100→Tiny ImageNet 31.5 33.7 33.9 34.2 33.5 35.6 35.5 34.6 34.5

(a) Effect of varying M (b) Effect of varying τs and τt (c) Effect of varying loss coefficient β

Figure 4. Ablation study results on CIFAR-100 using WRN-40-2 as the teacher and WRN-16-2 as the student. (a) Effect of the number of
negatives M on performance. Increasing M generally improves performance, but the difference becomes negligible beyond M = 4096. (b)
Effect of temperature parameters τs and τt. Lower τs than τt results in better performance, with extremely high or low temperatures leading
to sub-optimal solutions. (c) Effect of loss coefficient β on performance (logarithmic scale). Optimal β values range between 1 and 2.

Equation (3) and Equation (4); and temperature parameters
τs and τt of Equation (3) and Equation (4) that modulate the
softmax probability. We also ablate the hyperparameter β
that balances the KD loss. For the ablation study, we adopt
WRN-40-2 as the teacher and WRN-16-2 as the student.
Experiments are conducted on CIFAR-100, and the results
are shown in Figure 4.

Ablation on number of negatives M . We validated dif-
ferent values for M : 256, 1024, 2048, 4096, 8192, 16384,
and 32768. As shown in Figure 4a, increasing M leads to
improved performance. However, the difference in error rate
between M = 4096 and M = 16384 is less 0.5%. There-
fore, we use M = 16384 for reporting the accuracy, while in
practice lower M should suffice. Going beyond M = 16384
proves to harms performance.

Ablation on temperatures τs and τt. We varied τs and
τt, considering all the permutations of the numbers 0.04,
0.07, and 0.2 taken two at a time, considering that order
matters. As Figure 4b illustrates, both extremely high or
low temperatures lead to a sub-optimal solution. Also, as ex-
pected, a lower τs than τt leads to better performance. This
improvement is attributed to the sharper predictions from the
student model with a lower temperature, resulting in more
confident and distinct class probabilities. This sharpness

helps the student model align better with the teacher’s guid-
ance, enhance generalization, provide a more informative
learning signal, and reduce overfitting. The sweep spot lies
at τs = 0.04 and τt = 0.07 (red area of Figure 4b).

Ablation on loss coefficient β. We varied β from 0.1 to
100. As Figure 4c illustrates, both extremely high or low
β lead to a sub-optimal solution. In general, β between 1
and 2 works well on CIFAR-100, as it balances the KD loss
effectively without overwhelming other components of the
training objective.

5. Conclusions

Our method advances KD by maintaining relational consis-
tency between teacher and student models. RRD leverages a
large memory buffer of teacher samples to align output distri-
butions, ensuring consistent relational structures throughout
learning. Unlike traditional approaches, RRD uses pairwise
similarities and a relaxed contrastive loss to improve robust-
ness and performance of the student model without explicit
negatives. Extensive experiments on CIFAR-100, ImageNet,
STL-10, and Tiny ImageNet show that RRD consistently
outperforms state-of-the-art KD methods, demonstrating im-
proved accuracy and transferability of representations.
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