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Abstract

Knowledge distillation transfers knowledge from large,
high-capacity teacher models to more compact student net-
works. The standard approach minimizes the Kullback–
Leibler (KL) divergence between the probabilistic outputs of
the teacher and student, effectively aligning predictions but
neglecting the structural relationships encoded within the
teacher’s internal representations. Recent advances have
adopted contrastive learning objectives to address this limita-
tion; however, such instance-discrimination–based methods
inevitably induce a “class collision problem”, in which se-
mantically related samples are inappropriately pushed apart
despite belonging to similar classes. To overcome this, we
propose Relational Representation Distillation (RRD) that
preserves the relative relationships among instances rather
than enforcing absolute separation. Our method introduces
separate temperature parameters for teacher and student dis-
tributions, with a sharper teacher (low τt) emphasizing pri-
mary relationships and a softer student (high τs) maintain-
ing secondary similarities. This dual-temperature formula-
tion creates an implicit information bottleneck that preserves
fine-grained relational structure while avoiding the over-
separation characteristic of contrastive losses. We establish
theoretical connections showing that InfoNCE emerges as a
limiting case of our objective when τt → 0, and empirically
demonstrate that this relaxed formulation yields superior
relational alignment and generalization across classification
and detection tasks.

1. Introduction

Knowledge Distillation (KD) transfers knowledge from
large, high-capacity teacher models to compact student mod-
els [19]. This approach is increasingly relevant as state-
of-the-art vision models for image classification [12, 33],
object detection [29, 42], and semantic segmentation [6, 7]
continue to grow in size and computational cost [14, 23],
motivating efficient model compression techniques [3, 41].
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Figure 1. Visualization of the information bottleneck effect. The
teacher produces a sharper similarity distribution pT (xi; τt) (solid
black) highlighting primary relationships, while the student adopts a
softer distribution pS(xi; τs) (dashed black) that retains secondary
similarities. The gray-shaded overlap region illustrates the filtered
information flow, where only essential relational cues are trans-
ferred from teacher to student, effectively bounding I(zT ; zS).

The seminal work of Bucilua et al. [3] and Hinton et
al. [19] introduced the idea of transferring knowledge by
minimizing the Kullback–Leibler (KL) divergence between
teacher and student output distributions. This formulation
makes intuitive sense when the output is a categorical proba-
bility mass function over classes. However, in many cases,
we wish to transfer richer internal knowledge — not just
about class probabilities but about the underlying representa-
tions that encode visual semantics and inter-class relations.

Representational knowledge is inherently structured: fea-
ture dimensions exhibit non-trivial correlations and higher-
order dependencies. Logit matching alone cannot capture
this relational structure. To address this, feature-based meth-
ods [40, 43, 54, 56] extend distillation to intermediate rep-
resentations. However, Tian et al. [47] showed that such
approaches still neglect the structural knowledge encoded
in the teacher’s internal representations. To overcome this
limitation, Tian et al. [47] further adapted the family of con-
trastive objectives [1, 16, 20, 49] for distilling structured
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knowledge between teacher and student networks. These
objectives have been highly successful in density estimation
and self-supervised representation learning, as they implic-
itly maximize a lower bound on the mutual information
between paired embeddings.

However, such instance-discrimination–based approaches
inevitably introduce a “class-collision problem” [1, 26, 53],
in which semantically similar samples are undesirably
pushed apart due to uniform negative sampling. As shown
in our experiments (Tab. 6), this repulsion degrades seman-
tic coherence, leading to fragmented feature spaces where
related instances lose proximity. This occurs because con-
trastive objectives enforce strict pairwise separation across
instances—even when preserving relative similarity would
be more semantically meaningful. In the context of distilla-
tion, such behavior weakens the alignment between teacher
and student relational structures, preventing the student from
learning coherent semantic geometry.

To overcome these limitations, we propose Relational
Representation Distillation (RRD), which relaxes rigid con-
trastive objectives by preserving meaningful relative rela-
tionships between instances in feature space. For example,
given images of a “cat”, “dog”, and “plane”, what matters
is not absolute similarity scores but their relative ordering:
the cat should be closest to another cat, followed by the dog
(another animal), and farthest from the plane. RRD achieves
this by aligning the teacher and student similarity distribu-
tions through a KL-based loss, rather than enforcing one-hot
positive matches. We introduce distinct temperature param-
eters for the teacher and student distributions: a sharper
teacher (low τt) emphasizes primary relationships, while a
softer student (high τs) retains secondary similarities. This
dual-temperature mechanism naturally forms an information
bottleneck (Fig. 1), bounding the information transferred be-
tween teacher and student to only the most salient relational
cues. As shown empirically, this formulation mitigates class
collisions and yields superior structural alignment compared
to prior methods such as CRD [47].

Our main contributions are as follows:
• We propose an objective that preserves structural rela-

tionships between feature representations using distinct
temperature parameters for the teacher and student, form-
ing an implicit information bottleneck that balances sharp
primary alignment with smooth secondary similarities.

• We establish theoretical connections between our objec-
tive, InfoNCE [49], and the KL divergence, showing that
InfoNCE arises as a limiting case when τt → 0.

• We empirically demonstrate the advantages of our objec-
tive across classification (Tabs. 1 and 2) and detection
(Tab. 3) benchmarks, achieving consistent gains over exist-
ing methods. RRD achives 75.50% relative improvement
[47] over conventional KD and 80.03% when combined
with it (Tab. 1).

• We provide quantitative and qualitative analyses of learned
representations through correlation alignment (Fig. 2
and Tab. 5), semantic similarity evaluation (Tab. 6), and
retrieval-based assessment (Fig. 7 of the supplementary),
confirming that RRD maintains relational topology be-
tween teacher and student embeddings.

2. Related Work
The seminal works of Bucilua et al. [3] and Hinton et al. [19]
established the foundation of knowledge distillation, where
compact student networks learn from large teacher mod-
els with minimal loss in generalization. Bucilua et al. [3]
proposed matching model outputs, while Hinton et al. [19]
introduced temperature scaling in the softmax to soften class
probabilities, revealing richer inter-class relations—often
called “dark knowledge”. Later extensions such as Li et
al. [25] refined this formulation for better transferability.
Since then, knowledge distillation has evolved into several
branches, most notably logit-based [21, 36, 52] and feature-
based [43, 47, 54, 56] distillation.

Logit-based distillation. Logit-based approaches trans-
fer knowledge by matching the output logits (pre-softmax
scores) of the teacher and student, encouraging the student
to mimic the teacher’s predictive distribution and class-level
semantics. Early methods improved stability and transfer
via hierarchical supervision [52], multi-step training [36],
or collaborative learning [57]. Subsequent work refined
this process by adjusting how logits are represented or
weighted [38, 46, 55, 60]. Further refinements involved
dynamic temperature adjustment [27], transformation-based
alignment [59], and adaptive teacher calibration [21].

Feature-based distillation. Feature-based methods trans-
fer richer structural knowledge by aligning intermediate
teacher and student representations to capture spatial or
semantic relationships. Foundational work explored hint-
based supervision [43], attention transfer [56], and feature
transformation [22], later extended by functional consis-
tency [30], class-level attention [15], and structural normal-
ization [4, 8, 32]. A major branch focuses on preserving re-
lational structures among embeddings, ensuring pairwise or
higher-order relationships remain consistent between teacher
and student. Early works modeled such relations through
inner products [54], distance preservation [39], or correla-
tion congruence [40], while contrastive methods [47] maxi-
mized mutual information via memory banks. Recent studies
introduced redundancy reduction and kernel-based align-
ment [17, 35]. Our objective fits within this broader class
of feature-relational distillation methods but relaxes hard
contrastive constraints, focusing instead on smooth relational
distributions that preserve semantic coherence.
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Connection to information-theoretic objectives. Our ob-
jective is also related to InfoNCE [49] and Noise-Contrastive
Estimation (NCE) [16], which maximize a lower bound on
mutual information between representations [20]. While
adversarial frameworks [13, 13] similarly involve diver-
gence minimization, they differ in intent—NCE optimizes
a likelihood-based estimation objective rather than adver-
sarial discrimination. In this context, our dual-temperature
formulation can be viewed as an information bottleneck that
bounds the mutual information I(zT ; zS), ensuring that only
essential relational cues are transferred during distillation
(Fig. 1).

3. Methodology
Here, we introduce our objective which transfers knowledge
from a pre-trained teacher network to a student network by
leveraging relational cues embedded in their feature repre-
sentations. Section 3.1 outlines the fundamental principles
of knowledge distillation, Section 3.2 details the formula-
tion of our relational objective, and Section 3.3 provides an
analytical interpretation of the information bottleneck that
regulates the flow of relational knowledge.

3.1. Preliminaries on Knowledge Distillation
Knowledge distillation transfers knowledge from a high-
capacity teacher network fT

θ to a compact student network
fS
θ [3, 19]. Its primary objective is to enable the student

model to approximate the performance of the teacher model
while leveraging the student’s computational efficiency. The
overall distillation process can be formulated as:

θ̂S = argmin
θS

N∑
i

(Lsup(xi, θS , yi) + Ldistill(xi, θS , θT )) ,

(1)
where xi is an image, yi is the corresponding label, θS is
the parameter set for the student network, and θT is the set
for the teacher network. The loss Lsup is the alignment er-
ror between the network prediction and the annotation. For
example in image classification task [9, 37, 41, 44], it is
normally a cross entropy loss. For object detection [5, 31],
it includes bounding box regression as well. The distilla-
tion loss Ldistill quantifies how well the student mimics the
pre-trained teacher, commonly implemented using KL diver-
gence between softmax outputs [19] or ℓ2 distance between
feature maps [43]. While this approach demonstrates effec-
tiveness with labeled data, its performance in unsupervised
settings remains an open research question.

3.2. Relational Representation Distillation
Given an input image xi, it is first mapped into features
zTi = fT

θ (xi) and zSi = fS
θ (xi), where zTi , z

S
i ∈ Rd and

fT
θ , fS

θ denote the teacher and student networks, respectively.

All features are ℓ2-normalized, i.e., zTi ←
zT
i

||zT
i || and zSi ←

zS
i

||zS
i || , ensuring they lie on a unit hypersphere.

LetM = [m1, . . . ,mK ] denote a memory bank where
K is the memory length and mk ∈ Rd is a feature vector.
The memoryM stores previous teacher features and is up-
dated following a first-in-first-out (FIFO) strategy: we add
the teacher’s features from the current batch while removing
the oldest stored features per iteration (see Sec. 9.1 of the
supplementary for ablations on memory structure). This
buffer is critical for computing stable similarity distributions
that capture relational structures between feature representa-
tions. Without stored references, similarity estimation would
be limited to the current batch, restricting relational learn-
ing. While minimizing cross-entropy between student and
teacher similarity distributions using M allows soft con-
trasting against random samples, direct teacher alignment is
not enforced. To address this, we extend the memory bank
toM+ = [m1, . . . ,mK ,mK+1] by appending the teacher
embedding zTi as mK+1. This ensures that the teacher’s
most recent representation is explicitly considered when
computing similarity scores (see Sec. 8 of the supplementary
for theoretical analysis).

We define pT (xi; θT ;M+) as the teacher similarity
scores between the extracted teacher feature zTi and existing
memory features mj (for j = 1 to K + 1), represented as:

pT (xi; θT ,M+) =
[
pT1 , . . . , p

T
K+1

]
(2)

where

pTi =
exp(zTi ·mj/τt)∑

m∼M+

exp(zTi ·m/τt)
, (3)

and (·) denotes the inner product, and τt is a temperature
parameter for the teacher.

Similarly, we define pS(xi; θS ,M+) as the student sim-
ilarity scores between the extracted student feature zSi and
existing memory features mj , represented as:

pS(xi; θS ,M+) =
[
pS1 , . . . , p

S
K+1

]
(4)

where

pSi =
exp(zSi ·mj/τs)∑

m∼M+

exp(zSi ·m/τs)
(5)

and τs is a temperature parameter for the student.
Our distillation objective can be formulated as minimiz-

ing the KL divergence between the similarity scores of the
teacher, pT (xi; θT ,M+) and the student, pS(xi; θS ,M+),
over all the instances xi:
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θ̂S = argmin
θS

N∑
i

DKL(p
T (xi; θT ,M+) ∥ pS(xi; θS ,M+))

= argmin
θS

N∑
i

H(pT (xi; θT ,M+),pS(xi; θS ,M+))

+
����������:constant
H(pT (xi; θT ,M+)),

(6)
where DKL denotes the KL divergence between
pT (xi; θT ,M+) and pS(xi; θS ,M+). Here,
H(pT (xi; θT ,M+),pS(xi; θS ,M+)) represents the
cross-entropy between the teacher’s and student’s sim-
ilarity distributions, while H(pT (xi; θT ,M+)) is the
entropy of the teacher’s similarity distribution. Since
pS(xi; θS ,M+) will be used as a target, the gradient is
clipped here, thus we only minimize the cross-entropy term
H(pT (xi; θT ,M+),pS(xi; θS ,M+)):

θ̂S = argmin
θS

N∑
i=1

LRRD(xi, θS , θT ,M) (7)

where

LRRD = −pT (xi; θT ,M+) · logpS(xi; θS ,M+)

= −
K+1∑
j=1

exp(zTi ·mj/τt)
K+1∑
k=1

exp(zTi ·mk/τt)

log
exp(zSi ·mj/τs)

K+1∑
k=1

exp(zSi ·mk/τs)

.

(8)
Since we keep the teacher network frozen during training,
teacher similarity scores pTj directly influence corresponding
student weights pSj . The ℓ2 normalization ensures similarity
between zTi and mK+1 equals 1 pre-softmax, making it
dominate other pTj values. This maximum weight for pSK+1

can be controlled via temperature τt. The optimization aligns
student features zSi with teacher features while maintaining
contrast against memory features.

Note here that appending the current teacher embedding
as mK+1 ensures a clear peak in pT , preventing the KL
divergence from degenerating into weak contrastive align-
ment. As shown in our ablations (Sec. 4.4 and Fig. 3b),
performance improves with larger K until plateauing around
K = 16384. Storing 128-d features requires only ∼600MB
on ImageNet, allowing the bank to reside on GPU.

Relation to InfoNCE loss. As τt → 0, the teacher’s
softmax distribution pT becomes a one-hot vector with
pTK+1 = 1 and zeros elsewhere. This reduces our objec-
tive to:

LNCE =

N∑
i

− log
exp(zTi · zSi /τs)∑

m∼M+

exp(zSi ·m/τs)
, (9)

which matches the InfoNCE loss [49]. This implements in-
stance discrimination through (K + 1)-way classification,
separating different instances while enforcing identical repre-
sentations for matching pairs. We also provide a theoretical
analysis in the Sec. 8 of the supplementary.

Relation to Kullback-Leibler divergence. Hinton et al.
[19] defined the knowledge distillation loss via the Kull-
back–Leibler (KL) divergence between the softened output
distributions of the teacher and student networks:

LKL =

N∑
i=1

τ2DKL

(
σ(yTi /τ) ∥ σ(ySi /τ)

)

=

N∑
i=1

τ2
C∑

c=1

σ

(
yTi,c
τ

)
log

σ

(
yT
i,c

τ

)
σ
(

yS
i,c

τ

)
(10)

where σ(x) denotes the softmax function, and yTi , ySi repre-
sent the logits of the teacher and student networks, respec-
tively, with ySi,c and yTi,c referring to their logit values for
class c, before applying the softmax function. Both losses
use KL divergence to align the teacher and student distri-
butions. However, in Hinton’s formulation the softmax is
computed over C class logits (representing class predictions),
while in our objective it is computed over (K + 1) memory
bank entries (representing similarity scores between features
and memory bank entries).

Full objective. Consistent with prior work in knowledge
distillation, we formulate a full training objective that inte-
grates supervised learning, standard KL divergence–based
distillation, and our proposed loss. For clarity, we denote
our method as “RRD” when using only supervised learning
and our relational loss, and “RRD+KD” when combining
all three loss components (i.e., λ > 0). The full objective is
given by:

θ̂S = argmin
θS

N∑
i

(
Lsup(xi, θS , yi)

+ λ · LKL(xi, θS , θT ) + β · LRRD(xi, θS , θT ,M)
)
(11)

where λ and β balance the KL divergence and our proposed
loss, respectively. The combination of losses provides com-
plementary supervision: KD’s soft targets provide direct
class-level supervision through logit-space KL divergence,
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while our method ensures feature-space consistency. Un-
like [47] which enforces strict instance-level discrimination
that can push semantically similar samples too far apart, our
method relaxes this constraint by focusing on preserving rel-
ative relationships in the feature space, allowing the student
to maintain more nuanced similarities between instances
while still learning discriminative representations.

3.3. Information Bottleneck

The dual-temperature formulation in our objective estab-
lishes an implicit information bottleneck between the teacher
and student similarity distributions (see Fig. 1). We set
τs > τt, where τt and τs denote the temperature parameters
for the teacher and student, respectively. A smaller τt pro-
duces a sharper teacher distribution pT (xi; θT ,M+) that
emphasizes dominant relational cues, while a larger τs yields
a softer student distribution pS(xi; θS ,M+) that retains un-
certainty over secondary similarities. This design enforces a
selective transfer mechanism—only high-confidence, struc-
turally salient relations from the teacher produce strong gra-
dients in the student, while weaker or noisy relations are at-
tenuated. Consequently, the student acts as a controlled filter,
transmitting only the most informative relational cues from
the teacher’s representation space. This mechanism, which
we refer to as the filtered information flow, constrains the
amount of information shared between teacher and student
representations, forming a principled information bottleneck.
The effect of this temperature asymmetry and its empiri-
cal validation are analyzed in our ablation studies (Sec. 4.4
and Fig. 3a and Sec. 9 of the supplementary).

Formally, the mutual information between the teacher and
student representations is bounded by the entropy difference
between their respective similarity distributions:

I(zT ; zS) ≤ H(pS(xi; θS ,M+))−H(pT (xi; θT ,M+)),
(12)

where H(pS(xi; θS ,M+)) > H(pT (xi; θT ,M+)) due
to the softer student distribution. This entropy gap de-
fines the effective information capacity of the distilla-
tion process—the larger the gap, the stronger the bottle-
neck—ensuring that our objective transmits only essential
relational structure.

Intuitively, this bottleneck enforces a coarse-to-fine trans-
fer of representational knowledge: the teacher conveys sharp,
high-fidelity relational signals, while the student absorbs
them through smoother similarity distributions that general-
ize across related instances. This selective filtering prevents
overfitting to instance-level details and encourages the stu-
dent to preserve the underlying topology of the teacher’s
relational representation. Empirically, this filtered informa-
tion flow yields improved structural alignment (Tab. 5) and
enhanced semantic organization (Tab. 6) compared to both
conventional and contrastive distillation objectives.

4. Experiments

We conduct extensive experiments across multiple bench-
marks to evaluate the effectiveness and generality of our
proposed objective. Section 4.1 outlines the experimental
setup, Section 4.2 presents quantitative results across bench-
marks, and Section 4.3 analyzes the learned representations
and structural properties. Further ablations are discussed in
Section 4.4 and Section 9 of the supplementary.

4.1. Experimental Setup

We evaluate the proposed framework on both image classifi-
cation and object detection tasks using five standard bench-
marks: CIFAR-100 [24], ImageNet ILSVRC-2012 [11],
STL-10 [10], Tiny ImageNet [11], and MS-COCO [28]. Fol-
lowing prior work [47], we evaluate thirteen teacher–student
architecture pairs with varying capacity gaps to assess gener-
alization across different model families. For classification,
we adopt the implementation protocol of [47], while for de-
tection we follow [8, 58]. To ensure dimensional consistency
and preserve relational information during feature alignment,
both teacher and student features are passed through projec-
tion heads—two-layer MLPs (512 hidden, 128 output)—that
nonlinearly project intermediate representations into a shared
embedding space for computing relational similarity distri-
butions, improving KL alignment stability and structural
coherence as observed in prior work [34, 47]. The memory
bank size is fixed at K = 16,384. The temperature parame-
ters are set to τt = 0.02 for the teacher and τs = 0.1 for the
student, reflecting the asymmetric softening central to our in-
formation bottleneck formulation (Fig. 1 validated in Fig. 3a).
The distillation weight λ is fixed at 0.9 for CIFAR-100 and
1.0 for ImageNet, while β is set to 1.5 and 1.0 respectively.
When combined with standard KD, the temperature for the
logit-space KL divergence is τ = 4. Additional implementa-
tion details are provided in Sec. 7 of the supplementary.

4.2. Main Results

We first evaluate RRD on image classification (CIFAR-100,
ImageNet) and object detection (MS-COCO). Extended com-
parison is provided in Sec. 10 of the supplementary material.

Results on CIFAR-100. Table 1 reports top-1 accuracy
across both same architecture and cross (i.e., different) ar-
chitecture teacher–student pairs. RRD consistently outper-
forms classical KD [19] and contrastive-based CRD [47],
demonstrating that preserving relative similarity distribu-
tions offers stronger guidance than strict instance discrimi-
nation. When combined with Hinton’s KD [19], it achieves
further gains—KD provides class-level supervision through
logit-space KL divergence, while RRD enforces relational
consistency in the feature space.
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Table 1. Distillation results on CIFAR-100. Test top-1 accuracy (%) for different teacher–student pairs. The best and second-best results are
bolded and underlined. Results for baselines are from [47]; ours are averaged over five runs. Architecture abbreviations: W: WideResNet,
R: ResNet, MN: MobileNet, SN: ShuffleNet.

Same architecture Different architecture

Teacher W-40-2 W-40-2 R-56 R-110 R-110 R-32x4 VGG-13 VGG-13 R-50 R-50 R-32x4 R-32x4 W-40-2
Student W-16-2 W-40-1 R-20 R-20 R-32 R-8x4 VGG-8 MN-v2 MN-v2 VGG-8 SN-v1 SN-v2 SN-v1

Teacher 75.61 75.61 72.34 74.31 74.31 79.42 74.64 74.64 79.34 79.34 79.42 79.42 75.61
Student 73.26 71.98 69.06 69.06 71.14 72.50 70.36 64.60 64.60 70.36 70.50 71.82 70.50
KD [19] 74.92 73.54 70.66 70.67 73.08 73.33 72.98 67.37 67.35 73.81 74.07 74.45 74.83
FitNet [43] 73.58 72.24 69.21 68.99 71.06 73.50 71.02 64.14 63.16 70.69 73.59 73.54 73.73
AT [56] 74.08 72.77 70.55 70.22 72.31 73.44 71.43 59.40 58.58 71.84 71.73 72.73 73.32
SP [48] 73.83 72.43 69.67 70.04 72.69 72.94 72.68 66.30 68.08 73.34 73.48 74.56 74.52
CC [40] 73.56 72.21 69.63 69.48 71.48 72.97 70.81 64.86 65.43 70.25 71.14 71.29 71.38
RKD [39] 73.35 72.22 69.61 69.25 71.82 71.90 71.48 64.52 64.43 71.50 72.28 73.21 72.21
FSP [54] 72.91 n/a 69.95 70.11 71.89 72.62 70.33 58.16 64.96 71.28 74.12 74.68 76.09
OFD [18] 75.24 74.33 70.38 n/a 73.23 74.95 73.95 69.48 69.04 n/a 75.98 76.82 75.85
CRD [47] 75.48 74.14 71.16 71.46 73.48 75.51 73.94 69.73 69.11 74.30 75.11 75.65 76.05
CRD+KD [47] 75.64 74.38 71.63 71.56 73.75 75.46 74.29 69.94 69.54 74.97 75.12 76.05 76.27
RRD (ours) 75.85 74.61 71.89 71.92 73.73 75.77 74.01 69.61 70.11 74.30 75.60 76.31 75.98
RRD+KD (ours) 75.67 74.68 72.03 71.75 73.96 75.53 74.37 69.99 69.65 74.53 76.68 76.87 76.64

Table 2. Distillation results on ImageNet. Student top-1 accuracy (%) on the ImageNet validation set under various teacher–student pairs.
Baseline results are from [47]; ours are single-run evaluations.

Teacher Student KD [19] AT [56] SP [48] CC [40] RKD [39] CRD [47] RRD RRD+KD

ResNet-34→ResNet-18 73.31 69.75 70.67 71.03 70.62 69.96 70.40 71.17 72.03 71.99
ResNet-50→ResNet-18 76.16 69.75 71.29 71.18 71.08 n/a n/a 71.25 71.97 71.88
ResNet-50→MobileNet-v2 76.16 69.63 70.49 70.18 n/a n/a 68.50 69.07 71.54 71.56

Results on ImageNet. Table 2 shows that RRD scales
effectively to large-scale benchmarks such as ImageNet,
maintaining strong and consistent performance across di-
verse architectures. Its advantage remains evident for both
same- and cross-architecture teacher–student pairs. RRD sur-
passes KD [19], CRD [47], and their combination across all
evaluated settings, even when applied independently, under-
scoring its robustness and broad applicability to real-world
distillation scenarios.

Results on COCO. Table 3 extends our analysis to ob-
ject detection, evaluating Faster R-CNN models trained with
different distillation methods on MS-COCO [28]. By trans-
ferring relational cues from teacher feature maps, RRD im-
proves detection accuracy across teacher–student pairs while
maintaining stability during fine-tuning and optimization.
Its performance remains competitive with or superior to
advanced methods such as ReviewKD [8] and DKD [58],
underscoring that relational structure consistently benefits
spatially localized prediction tasks.

4.3. Representation Analysis

We next analyze the learned feature representations to as-
sess structural and semantic fidelity. This includes exam-
ining transferability, inter-class correlation alignment, and
semantic organization. Extended comparison in provided
in Sec. 10 of the supplementary. Additional visualizations
(t-SNE, nearest-neighbor retrieval) are provided in Sec. 11
of the supplementary.

Visualization of inter-class correlations. Figure 2 com-
pares the correlation matrix differences between teacher and
student logits. Our objective achieves better alignment of
correlation structures compared to models trained without
distillation or with alternative methods [19, 47]. Standalone,
it outperforms CRD [47], demonstrating stronger structural
preservation. When combined with Hinton’s KD [19], it fur-
ther improves alignment. This structural coherence indicates
that RRD helps students internalize the teacher’s feature
geometry rather than memorizing isolated logits.
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Table 3. Object detection distillation results on COCO. Detection performance (AP, AP50, AP75) of student detectors trained with
different distillation methods using Faster R-CNN on COCO val2017. Baseline results follow [58]; ours are from a single run.

Method ResNet-101→ ResNet-18 ResNet-101→ ResNet-50 ResNet-50→MobileNet-v2

AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

Teacher 42.04 62.48 45.88 42.04 62.48 45.88 40.22 61.02 43.81
Student 33.26 53.61 35.26 37.93 58.84 41.05 29.47 48.87 30.90
KD [19] 33.97 54.66 36.62 38.35 59.41 41.71 30.13 50.28 31.35
FitNet [43] 34.13 54.16 36.71 38.76 59.62 41.80 30.20 49.80 31.69
ReviewKD [8] 36.75 56.72 34.00 40.36 60.97 44.08 33.71 53.15 36.13
DKD [58] 35.05 56.60 37.54 39.25 60.90 42.73 32.34 53.77 34.01
RRD (ours) 36.85 57.10 39.20 40.15 61.00 43.90 33.90 54.20 36.00

Table 4. Transfer learning performance results with distilled students. Top-1 accuracy (%) of a WRN-16-2 student distilled from
WRN-40-2, evaluated on STL-10 and Tiny ImageNet. Results for baselines are from [47]; ours are averaged over five runs.

Teacher Student KD [19] AT [56] FitNet [43] CRD [47] CRD+KD [47] RRD RRD+KD

CIFAR-100→STL-10 68.6 69.7 70.9 70.7 70.3 71.6 72.2 72.0 72.0
CIFAR-100→Tiny ImageNet 31.5 33.7 33.9 34.2 33.5 35.6 35.5 35.5 35.2

(a) Vanilla
Mean: 0.24, Max: 1.66

(b) KD [19]
Mean: 0.09, Max: 0.49

(c) CRD [47]
Mean: 0.23, Max: 1.56

(d) CRD+KD [47]
Mean: 0.10, Max: 0.57

(e) RRD (ours)
Mean: 0.18, Max: 0.99

(f) RRD+KD (ours)
Mean: 0.07, Max: 0.55

Figure 2. Correlation alignment on CIFAR-100. Correlation matrix comparison between teacher (WRN-40-2) and student (WRN-40-1)
logits. Lower values indicate stronger alignment of inter-class relations.

Transferability of representations. Table 4 evaluates a
WRN-16-2 student distilled from a WRN-40-2 teacher as a
frozen feature extractor. RRD achieves strong and consistent
transfer performance on unseen datasets, indicating that its
representations effectively encode relational semantics rather
than overfitting to task-specific decision boundaries or local
class structures.

Correlation matrix alignment. Table 5 quantifies how
well student models preserve the relational structure of their
teachers on CIFAR-100, using Frobenius distance [45], Pear-
son correlation [2], and structural similarity index (SSIM)
[51]. RRD maintains strong structural alignment, and when
combined with KD [19], it achieves the best overall corre-
spondence. Although KD slightly outperforms standalone
RRD on some metrics due to its direct logit matching, com-
bining with Hinton’s KD objective leverages global rela-
tional cues from RRD and local soft-target supervision from
KD, resulting in the most faithful teacher–student alignment.

Semantic structure preservation. Table 6 evaluates the
semantic organization of learned features on CIFAR-100
through intra-class compactness, inter-class separation, nor-
malized mutual information (NMI) [50], and retrieval pre-
cision measured by mean average precision at 5 (mAP@5)
[58]. RRD improves semantic clustering compared to CRD
[47], confirming that the information bottleneck—introduced
by asymmetric temperatures—filters noise while retaining
essential relational structure. This leads to more coherent
embedding spaces where similar classes remain proximally
organized.

4.4. Ablation Study

We further analyze the influence of individual design choices
on CIFAR-100 using WRN-40-2 (teacher) and WRN-16-2
(student). Each experiment is repeated three times to en-
sure consistency and reliability; full ablations and additional
analyses are provided in Sec. 9 of the supplementary.
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Figure 3. Ablation study results on CIFAR-100 using WRN-40-2 as the teacher and WRN-16-2 as the student. We analyze the influence
of individual design choices of RRD, including temperature parameters (τt, τs), memory size (K), and loss coefficients (β, λ) to analyze
their impact on performance. Each configuration is averaged over three runs, and all curves are smoothed using Savitzky–Golay filtering for
visual clarity.

Table 5. Correlation matrix alignment metrics on CIFAR-100.
Quantitative comparison of relational alignment between teacher
(WRN-40-2) and student (WRN-40-1) embeddings using Frobenius
distance, Pearson correlation, and SSIM.

Method Frobenius ↓ Pearson ↑ SSIM ↑

Vanilla 10.491 0.951 0.935
KD [19] 2.868 0.994 0.992
CRD [47] 8.862 0.946 0.938
CRD+KD [47] 3.265 0.992 0.989
RRD (ours) 6.969 0.970 0.964
RRD+KD (ours) 2.720 0.995 0.993

Temperature parameter. To verify the effectiveness of τs
and τt, we fixed τs ∈ {0.1, 0.2, 1.0} and varied τt from 0.01
to 1.0. Figure 3a shows optimal performance at τs = 0.1,
τt = 0.02. Performance degrades as τt increases, with a
sharp drop when τt > τs, indicating that softer teacher dis-
tributions than student harm distillation and aligning with
our information bottleneck interpretation. Excessively soft
student distributions (τs = 1.0) consistently underperform.
Note that τt → 0 corresponds to the argmax operation, pro-
ducing a one-hot target, while higher values of τt produce
softer distributions that weaken teacher-student alignment.

Memory size. We tested memory sizes from K = 64
(batch size limitation, i.e., no memory bank) to 65, 536
(Figure 3b) and observed that performance improves for
both RRD and CRD (repr.) methods, plateauing around
K = 16384 with minimal gains thereafter. Using separate
memory banks for teacher and student would fail because
the KL divergence would align distributions over different
feature sets without direct feature matching. Storing student
features in the memory bank would create unstable training
targets as student representations continuously evolve during
training, undermining consistent supervision.

Table 6. Semantic similarity preservation on CIFAR-100. Evalu-
ation of intra-/inter-class structure, NMI, and retrieval mAP@5 of
student embeddings under differet distillation methods.

Method Intra ↓ Inter ↑ NMI ↑ mAP@5 ↑

Vanilla 0.945 0.866 0.551 81.0
KD [19] 0.914 1.012 0.546 85.4
CRD [47] 0.910 0.915 0.509 84.6
CRD+KD [47] 0.973 0.926 0.463 85.2
RRD (ours) 0.928 0.909 0.544 83.9
RRD+KD (ours) 0.902 1.023 0.562 85.9

Loss weighting. We investigated the impact of loss coeffi-
cient β by varying it from 0 to 10. As shown in Figure 3c,
values of β between 0.5 and 1.5 work best, similar to [47]
findings. Finally, although we typically fix λ = 1, Figure 3d
illustrates the effect of varying it from 0 to 100.

5. Conclusion

We introduced a distillation framework that transfers knowl-
edge by aligning relational similarity structures between
teacher and student representations through a controlled in-
formation bottleneck. Extensive experiments across image
classification, transfer learning, and object detection bench-
marks demonstrate that RRD consistently outperforms both
conventional and contrastive distillation approaches across
diverse datasets and architectures. By emphasizing relative
relationships rather than absolute feature matching, RRD
preserves the structural and semantic integrity of learned
representations, resulting in more robust, generalizable, and
transferable models that faithfully capture the teacher’s rela-
tional geometry while delivering superior downstream per-
formance, enhanced stability, and improved representational
consistency across tasks and scales.

8



Acknowledgments

We acknowledge the computational resources and support
provided by the Imperial College Research Computing
Service (http://doi.org/10.14469/hpc/2232),
which enabled our experiments.

References
[1] Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak,

Orestis Plevrakis, and Nikunj Saunshi. A theoretical analysis
of contrastive unsupervised representation learning, 2019. 1,
2

[2] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel
Cohen. Pearson correlation coefficient. Noise reduction in
speech processing, pages 1–4, 2009. 7
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