
Relational Representation Distillation

Supplementary Material

1. Algorithm

Algorithm 1 provides the pseudo-code of RRD.

2. Implementation Details

We implement RRD in PyTorch following the implementa-
tion of CRD1.

2.1. Baseline Methods

We compare our approach to the following state-of-the-art
methods from the literature: (1) Knowledge Distillation (KD)
[11]; (2) FitNets: Hints for Thin Deep Nets [22]; (3) Atten-
tion Transfer (AT) [29]; (4) Similarity-Preserving Knowl-
edge Distillation (SP) [26]; (5) Correlation Congruence (CC)
[21]; (6) Variational Information Distillation for Knowledge
Transfer (VID) [1]; (7) Relational Knowledge Distillation
(RKD) [19]; (8) Learning Deep Representations with Prob-
abilistic Knowledge Transfer (PKT) [20]; (9) Knowledge
Transfer via Distillation of Activation Boundaries Formed by
Hidden Neurons (AB) [10]; (10) Paraphrasing Complex Net-
work: Network Compression via Factor Transfer (FT) [13];
(11) A Gift from Knowledge Distillation: Fast Optimization,
Network Minimization and Transfer Learning (FSP) [28];
(12) Like What You Like: Knowledge Distill via Neuron
Selectivity Transfer (NST) [12]; (13) Contrastive Represen-
tation Distillation (CRD) [25]; (14) A Comprehensive Over-
haul of Feature Distillation (OFD); (15) Rethinking Soft La-
bels for Knowledge Distillation: A Bias-Variance Tradeoff
Perspective (WSLD) [32]; (16) Respecting Transfer Gap in
Knowledge Distillation (IPWD) [18]; (17) Knowledge Dis-
tillation via Softmax Regression Representation Learning
(SRRL) [27]; (18) Cross-Layer Distillation with Semantic
Calibration (SemCKD) [2]; (19) Distilling Knowledge via
Knowledge Review (ReviewKD) [5]; (20) Knowledge Dis-
tillation with the Reused Teacher Classifier (SimKD) [3];
(21) Searching A Fast Knowledge Distillation Process via
Meta Optimization (DistPro) [6]; (22) Knowledge Distilla-
tion via N-to-One Representation Matching (NORM) [14];
(23) Information Theoretic Representation (ITRD) [17]; (24)
Feature Kernel Distillation (FKD) [7]; (25) Complementary
Relation Contrastive Distillation (CRCD) [33]; (26) Distill-
ing Knowledge from Self-Supervised Teacher by Embedding
Graph Alignment (EGA) [16]; (27) Wasserstein Contrastive
Representation Distillation (WCoRD) [4].

1Available at: https : / / github . com / HobbitLong /
RepDistiller.

2.2. Network Architectures

We use the following network architectures as described
in [25]: (1) Wide Residual Network (WRN) [30], where
WRN-d-w represents a wide ResNet with depth d and width
factor w; (2) ResNet [8], where resnet-d represents a CIFAR-
style ResNet with 3 groups of basic blocks having 16, 32,
and 64 channels, respectively, and resnet-8 ×4 and resnet-
32 ×4 indicate a 4-times wider network with 64, 128, and
256 channels; (3) ResNet [8], where ResNet-d represents
an ImageNet-style ResNet with Bottleneck blocks and more
channels; (4) MobileNet-v2 [23], using a width multiplier of
0.5 in our experiments; (5) VGG [24], where the VGG net-
work used is adapted from its original ImageNet counterpart;
and (6) ShuffleNet-v1 [31] and ShuffleNet-v2 [15], which
are adapted for efficient training with input sizes of 32× 32.

2.3. Optimization

All methods evaluated in our experiments use SGD with
0.9 Nesterov momentum. For CIFAR-100, we initialize the
learning rate as 0.05, and decay it by 0.1 every 30 epochs
after the first 150 epochs until the last 240 epoch. For
MobileNet-v2, ShuffleNet-v1, and ShuffleNet-v2, we use
a learning rate of 0.01 as this learning rate is optimal for
these models in a grid search, while 0.05 is optimal for other
models. The batch size is set to 64 for CIFAR-100, and the
weight decay is set to 5 × 10−4. For ImageNet, the initial
learning rate is set to 0.1 and then divided by 10 at the 30th,
60th, and 90th epochs of the total 120 training epochs. The
mini-batch size is set to 256, and the weight decay is set to
1× 10−4. All results are reported as means over three trials,
except for the results on ImageNet, which are reported in a
single trial.

3. Results

Table 1 and Table 2 provide a comprehensive overview of
the top-1 accuracies of student networks trained with various
state-of-the-art distillation techniques across a wide range
of teacher-student architectural combinations. Unlike the
main text, which summarizes a subset of results, these tables
offer an extended comparison involving more models and
training configurations. Our proposed method, RRD, shows
strong performance across diverse network architectures and
teacher-student pairs. RRD performs nearly as well as the
top methods in knowledge distillation, achieving accuracy
rates very close to the best-performing techniques, indicating
an effective balance between simplicity and performance.
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Algorithm 1 Pseudocode of RRD in a PyTorch-like style.

# f_t, f_s: outputs at the penultimate layer of teacher and student networks
# t_dim: The input feature dimension for the teacher
# s_dim: The input feature dimension for the student
# feat_dim: The projection feature space dimension
# nce_k: number of instances in queue
# nce_t_s, nce_t_t: the temperature paramters for student and teacher networks
# N: batch size

class RRDLoss(nn.Module):
def __init__(self, s_dim, t_dim, feat_dim, nce_k=16384, nce_t_t=0.07, nce_t_s=0.04):

super(RRDLoss, self).__init__()

# embedding layer
self.embed_s = nn.Linear(s_dim, feat_dim)
self.embed_t = nn.Linear(t_dim, feat_dim)

# memory buffer
self.register_buffer("queue", torch.randn(nce_k, feat_dim))
self.queue = F.normalize(self.queue, dim=0)
self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long))

def forward(self, f_s, f_t):
f_s = self.embed_s(f_s)
f_t = self.embed_t(f_t)

f_s = F.normalize(f_s, dim=1)
f_t = F.normalize(f_t, dim=1)

l_s = torch.einsum("nc,kc->nk", [f_s, self.queue])
l_t = torch.einsum("nc,kc->nk", [f_t, self.queue])

loss = -torch.sum(
F.softmax(l_t / self.nce_t_t, dim=1) *
F.log_softmax(l_s / self.nce_t_s, dim=1), dim=1).mean()

self._dequeue_and_enqueue(f_t)

return loss
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Table 1. Test top-1 accuracy (%) of student networks on CIFAR-100, comparing students and teachers of the same architecture using
various distillation methods. The values in bold indicate the maximum of each column. ↑ denotes outperformance over KD and ↓ denotes
underperformance.

Teacher WRN-40-2 WRN-40-2 resnet-56 resnet-110 resnet-110 resnet-32x4 VGG-13
Student WRN-16-2 WRN-40-1 resnet-20 resnet-20 resnet-32 resnet-8x4 VGG-8
Teacher 75.61 75.61 72.34 74.31 74.31 79.42 74.64
Student 73.26 71.98 69.06 69.06 71.14 72.50 70.36
KD [11] 74.92 73.54 70.66 70.67 73.08 73.33 72.98
FitNet [22] 73.58 (↓) 72.24 (↓) 69.21 (↓) 68.99 (↓) 71.06 (↓) 73.50 (↑) 71.02 (↓)
AT [29] 74.08 (↓) 72.77 (↓) 70.55 (↓) 70.22 (↓) 72.31 (↓) 73.44 (↑) 71.43 (↓)
SP [26] 73.83 (↓) 72.43 (↓) 69.67 (↓) 70.04 (↓) 72.69 (↓) 72.94 (↓) 72.68 (↓)
CC [21] 73.56 (↓) 72.21 (↓) 69.63 (↓) 69.48 (↓) 71.48 (↓) 72.97 (↓) 70.81 (↓)
VID [1] 74.11 (↓) 73.30 (↓) 70.38 (↓) 70.16 (↓) 72.61 (↓) 73.09 (↓) 71.23 (↓)
RKD [19] 73.35 (↓) 72.22 (↓) 69.61 (↓) 69.25 (↓) 71.82 (↓) 71.90 (↓) 71.48 (↓)
PKT [20] 74.54 (↓) 73.45 (↓) 70.34 (↓) 70.25 (↓) 72.61 (↓) 73.64 (↑) 72.88 (↓)
AB [10] 72.50 (↓) 72.38 (↓) 69.47 (↓) 69.53 (↓) 70.98 (↓) 73.17 (↓) 70.94 (↓)
FT [13] 73.25 (↓) 71.59 (↓) 69.84 (↓) 70.22 (↓) 72.37 (↓) 72.86 (↓) 70.58 (↓)
FSP [28] 72.91 (↓) n/a 69.95 (↓) 70.11 (↓) 71.89 (↓) 72.62 (↓) 70.33 (↓)
NST [12] 73.68 (↓) 72.24 (↓) 69.60 (↓) 69.53 (↓) 71.96 (↓) 73.30 (↓) 71.53 (↓)
CRD [25] 75.48 (↑) 74.14 (↑) 71.16 (↑) 71.46 (↑) 73.48 (↑) 75.51 (↑) 73.94 (↑)
CRD+KD [25] 75.64 (↑) 74.38 (↑) 71.63 (↑) 71.56 (↑) 73.75 (↑) 75.46 (↑) 74.29 (↑)
OFD [9] 75.24 (↑) 74.33 (↑) 70.38 (↓) n/a 73.23 (↑) 74.95 (↑) 73.95 (↑)
WSLD [32] n/a 73.74 (↑) 71.53 (↑) n/a 73.36 (↑) 74.79 (↑) n/a
IPWD [18] n/a 74.64 (↑) 71.32 (↑) n/a 73.91 (↑) 76.03 (↑) n/a
SRRL [27] n/a 74.64 (↑) n/a n/a n/a 75.39 (↑) n/a
SemCKD [2] n/a 74.41 (↑) n/a n/a n/a 76.23 (↑) n/a
ReviewKD [5] 76.12 (↑) 75.09 (↑) 71.89 (↑) n/a 73.89 (↑) 75.63 (↑) 74.84 (↑)
SimKD [3] n/a 75.56 (↑) n/a n/a n/a 78.08 (↑) n/a
DistPro [6] 76.36 (↑) n/a 72.03 (↑) n/a 73.74 (↑) n/a n/a
NORM [14] 75.65 (↑) 74.82 (↑) 71.35 (↑) 71.55 (↑) 73.67 (↑) 76.49 (↑) 73.95 (↑)
NORM+KD [14] 76.26 (↑) 75.42 (↑) 71.61 (↑) 72.00 (↑) 74.95 (↑) 76.98 (↑) 74.46 (↑)
NORM+CRD [14] 76.02 (↑) 75.37 (↑) 71.51 (↑) 71.90 (↑) 73.81 (↑) 76.49 (↑) 73.58 (↑)
WCoRD [4] 75.88 (↑) 74.73 (↑) 71.56 (↑) 71.57 (↑) 73.81 (↑) 75.95 (↑) 74.55 (↑)
WCoRD+KD [4] 76.11 (↑) 74.72 (↑) 71.92 (↑) 71.88 (↑) 74.20 (↑) 76.15 (↑) 74.72 (↑)
CRCD [33] 76.67 (↑) 75.95 (↑) 73.21 (↑) 72.33 (↑) 74.98 (↑) 76.42 (↑) 74.97 (↑)
FKD [7] n/a n/a n/a n/a n/a 75.57 (↑) 73.78 (↑)
ITRD (corr) [17] 75.85 (↑) 74.90 (↑) 71.45 (↑) 71.77 (↑) 74.02 (↑) 75.63 (↑) 74.70 (↑)
ITRD (corr+mi) [17] 76.12 (↑) 75.18 (↑) 71.47 (↑) 71.99 (↑) 74.26 (↑) 76.19 (↑) 74.93 (↑)
RRD (ours) 75.01 (↑) 73.55 (↑) 70.71 (↑) 70.72 (↑) 73.10 (↑) 74.48 (↑) 73.99 (↑)
RRD+KD (ours) 75.66 (↑) 74.39 (↑) 72.19 (↑) 71.74 (↑) 73.54 (↑) 75.08 (↑) 74.32 (↑)
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Table 2. Test top-1 accuracy (%) of student networks on CIFAR-100 involving students and teachers from different architectures, using
various distillation methods. The values in bold indicate the maximum of each column. ↑ denotes outperformance over KD and ↓ denotes
underperformance.

Teacher VGG-13 ResNet-50 ResNet-50 ResNet-32x4 ResNet-32x4 WRN-40-2
Student MobileNet-v2 MobileNet-v2 VGG-8 ShuffleNet-v1 ShuffleNet-v2 ShuffleNet-v1
Teacher 74.64 79.34 79.34 79.42 79.42 75.61
Student 64.60 64.60 70.36 70.5 71.82 70.5
KD [11] 67.37 67.35 73.81 74.07 74.45 74.83
FitNet [22] 64.14 (↓) 63.16 (↓) 70.69 (↓) 73.59 (↓) 73.54 (↓) 73.73 (↓)
AT [29] 59.40 (↓) 58.58 (↓) 71.84 (↓) 71.73 (↓) 72.73 (↓) 73.32 (↓)
SP [26] 66.30 (↓) 68.08 (↑) 73.34 (↓) 73.48 (↓) 74.56 (↑) 74.52 (↓)
CC [21] 64.86 (↓) 65.43 (↓) 70.25 (↓) 71.14 (↓) 71.29 (↓) 71.38 (↓)
VID [1] 65.56 (↓) 67.57 (↑) 70.30 (↓) 73.38 (↓) 73.40 (↓) 73.61 (↓)
RKD [19] 64.52 (↓) 64.43 (↓) 71.50 (↓) 72.28 (↓) 73.21 (↓) 72.21 (↓)
PKT [20] 67.13 (↓) 66.52 (↓) 73.01 (↓) 74.10 (↑) 74.69 (↑) 73.89 (↓)
AB [10] 66.06 (↓) 67.20 (↓) 70.65 (↓) 73.55 (↓) 74.31 (↓) 73.34 (↓)
FT [13] 61.78 (↓) 60.99 (↓) 70.29 (↓) 71.75 (↓) 72.50 (↓) 72.03 (↓)
NST [12] 58.16 (↓) 64.96 (↓) 71.28 (↓) 74.12 (↑) 74.68 (↑) 76.09 (↑)
CRD [25] 69.73 (↑) 69.11 (↑) 74.3 (↑) 75.11 (↑) 75.65 (↑) 76.05 (↑)
CRD+KD [25] 69.94 (↑) 69.54 (↑) 74.58 (↑) 75.12 (↑) 76.05 (↑) 76.27 (↑)
OFD [9] 69.48 (↑) 69.04 (↑) n/a 75.98 (↑) 76.82 (↑) 75.85 (↑)
WSLD [32] n/a 68.79 (↑) 73.80 (↓) 75.09 (↑) n/a 75.23 (↑)
IPWD [18] n/a 70.25 (↑) 74.97 (↑) 76.03 (↑) n/a 76.44 (↑)
SRRL [27] n/a n/a n/a 75.18 (↑) n/a n/a
SemCKD [2] n/a n/a n/a n/a 77.62 (↑) n/a
ReviewKD [5] 70.37 (↑) 69.89 (↑) n/a 77.45 (↑) 77.78 (↑) 77.14 (↑)
SimKD [3] n/a n/a n/a 77.18 (↑) n/a n/a
DistPro [6] n/a n/a n/a 77.18 (↑) 77.54 (↑) 77.24 (↑)
NORM [14] 68.94 (↑) 70.56 (↑) 75.17 (↑) 77.42 (↑) 78.07 (↑) 77.06 (↑)
NORM+KD [14] 69.38 (↑) 71.17 (↑) 75.67 (↑) 77.79 (↑) 78.32 (↑) 77.63 (↑)
NORM+CRD [14] 69.17 (↑) 71.08 (↑) 75.51 (↑) 77.50 (↑) 77.96 (↑) 77.09 (↑)
WCoRD [4] 69.47 (↑) 70.45 (↑) 74.86 (↑) 75.40 (↑) 75.96 (↑) 76.32 (↑)
WCoRD+KD [4] 70.02 (↑) 70.12 (↑) 74.68 (↑) 75.77 (↑) 76.48 (↑) 76.68 (↑)
CRCD [33] n/a n/a n/a n/a n/a n/a
FKD [7] n/a n/a 74.61 (↑) 75 (↑) n/a n/a
ITRD (corr) [17] 69.97 (↑) 71.41 (↑) 75.71 (↑) 76.8 (↑) 77.27 (↑) 77.35 (↑)
ITRD (corr+mi) [17] 70.39 (↑) 71.34 (↑) 75.49 (↑) 76.91 (↑) 77.40 (↑) 77.09 (↑)
RRD (ours) 67.93 (↑) 68.84 (↑) 74.01 (↑) 74.11 (↑) 74.80 (↑) 74.98 (↑)
RRD+KD (ours) 69.98 (↑) 69.13 (↑) 74.26 (↑) 75.18 (↑) 76.29 (↑) 76.31 (↑)
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