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Introduction
This paper addresses the neglected potential of hard negative
samples in self-supervised learning for vision transformers.

• Previous works explored synthetic hard negatives but not in
the context of vision transformers

• We build on this observation and integrate synthetic hard
negatives generated ”on-the-fly” to improve vision transformer
representation learning

• This simple yet effective technique notably improves the
discriminative power of learned representations

• Our experiments show performance improvements for both
DeiT-S and Swin-T architectures

"If intelligence is a cake, the bulk of the
cake is unsupervised learning"
- Yann LeCun

Preliminaries

Contrastive Learning
Contrastive learning aims to differentiate between similar and
dissimilar data pairs. Given an image x, and two augmented
views, we minimize the InfoNCE loss:

L(q,k,Q) = − log
exp(q⊤ · k/τ )

exp(q⊤ · k/τ ) +
∑
n∈Q

exp(q⊤ · n/τ )

where q and k are the representations of two augmented views,
Q is a set of negative samples, and τ is a temperature parameter.

Methodology

Synthetic Hard Negatives
Synthetic hard negatives provide challenging examples that help
models learn more discriminative features. We generate them
using an arbitrary function G (see SynCo [2] for details):

s =
G(q,QN ; ξ)

∥G(q,QN ; ξ)∥2

whereQN are the topN hardest negatives and ξ controls the
synthesis process.

The modified InfoNCE loss is given by:

L(q,k,Q,S) = − log
exp(q⊤ · k/τ )

exp(q⊤ · k/τ ) + Z

where Z represents the negative samples:

Z =
∑
n∈Q

exp(q⊤ · n/τ ) +
∑
s∈S

exp(q⊤ · s/τ )

The first sum represents memory-based negatives and the
second sum represents synthetic negatives.

Experiments
We develop our approach in PyTorch, building upon the
implementation of MoBY [1] and SynCo [2]. We pretrain on
ImageNet ILSVRC-2012 using a DeiT-Small or Swin-Tiny encoder.
We refer to our method as SynBY.

Linear Evaluation on ImageNet
Method Architecture Params (M) Top-1 (%)

Supervised DeiT-S 22 79.8
Supervised Swin-T 29 81.3

DINO DeiT-S 22 72.5
MoCo-v3 DeiT-S 22 72.5

MoBY DeiT-S 22 72.8
MoBY Swin-T 29 75.0

SynBY (ours) DeiT-S 22 73.0 ↑0.2
SynBY (ours) Swin-T 29 75.2 ↑0.2

Attention Visualization
MoBY SynBY (ours)
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