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6. Implementation Details
We use PyTorch, building upon the implementation of MoBY.
While MoBY integrates two self-supervised learning meth-
ods, MoCo-v2 and BYOL, our method combines SynCo
with BYOL. Since SynCo extends MoCo-v2 with synthetic
negatives, our method reduces to MoBY when no synthetic
negatives are generated.

6.1. Pretraining
Datasets. We evaluate our method on ImageNet ILSVRC-
2012 [3], which includes 1000 classes and is commonly used
in previous self-supervised methods [1, 2, 18, 19]. We also
conduct ablation studies on ImageNet-100 [9], a subset of
100 classes derived from ImageNet. Both datasets are well-
balanced in class distribution, and the images contain iconic
views of objects, as is common in vision tasks [18].

Architecture. Our online encoder, fq, consists of a back-
bone, a projection head [1], and an extra prediction head [6];
the target encoder, fk, has the backbone and projection head,
but not the prediction head. The target is updated by the
moving average of fq [6, 7]. For the backbone, we adopt the
ViT-Small [4, 16] or SWIN-Tiny [12] architecture without
the final classification layer. Both the projection head and
the prediction head are two-layer MLPs. The hidden layers
of both MLPs are 4096-d and are with ReLU [14]; the output
layers of both MLPs are 256-d, without ReLU. All layers in
both MLPs have batch normalization [8].

Optimization. We follow the same setting as [17]. We
utilize the AdamW optimizer [13] with a base learning rate
of 0.03 and a weight decay of 10−4. The training schedule
begins with a warm-up period during the first 30 epochs in
which the learning rate linearly increases from zero to the
base learning rate. Following this, the learning rate grad-
ually decreases to zero following a cosine decay schedule
without restarts. For the target network, the exponential
moving average parameter m starts from mstart = 0.99 and
is increased to one during training. Specifically, we set
m ≜ 1− (1−mstart) ·

(
cos

(
πk
K

)
+ 1

)
/2, with k the current

training step and K the maximum number of training steps.
We use a batch size of 512 split over 4 NVIDIA L40S GPUs.

Augmentation. We use the same set of image augmenta-
tions as in BYOL [6]. First, a random patch of the image is
selected and resized to 224× 224 with a random horizontal
flip, followed by a color distortion, consisting of a random
sequence of brightness, contrast, saturation, hue adjustments,

and an optional grayscale conversion. Finally Gaussian blur
and solarization are applied to the patches. The augmenta-
tion parameters are detailed in Table 2.

Table 2. Parameters used to generate image augmentations.

Parameter BYOL
T T ′

Random crop probability 1.0 1.0
Flip probability 0.5 0.5
Flip probability 0.8 0.8
Brightness adjustment max intensity 0.4 0.4
Contrast adjustment max intensity 0.4 0.4
Saturation adjustment max intensity 0.2 0.2
Hue adjustment max intensity 0.1 0.1
Color dropping probability 0.2 0.2
Gaussian blurring probability 1.0 0.1
Solarization probability 0.0 0.2

Hard negative generation. We follow the same setting
as [5]. Specifically, we set αmax = 0.5, βmax = 1.5, γk
is randomly sampled from a uniform distribution in the
range (0, 1), σ = 0.01, δ = 0.01, and η = 0.01 (see
ξ in Equation (2)). For hard negative generation, we se-
lect the top N = 256 hardest negatives and set Ni = 128
(i = 1, 2, . . . , 6) to maintain a balanced total number of gen-
erated hard negatives, as defined in Section 7. We implement
a cooldown period for the last 100 epochs where no synthetic
negatives are generated1.

6.2. Linear Evaluation
We follow the linear evaluation protocol of [7] and as in
[10, 11], which consists in training a linear classifier on top
of the frozen features pretrained with our SynBY method
without updating the backbone network parameters or batch
statistics. During training, we apply spatial augmentations
including random crops with resize to 224× 224 pixels and
horizontal flips. At test time, images are resized to 256 pixels
along the shorter side using bicubic resampling, followed
by a 224 × 224 center crop. For both stages, we normal-
ize color channels by subtracting the mean and dividing by
the standard deviation after applying augmentations. We
optimize the cross-entropy loss using SGD with Nesterov
momentum of 0.9 over 100 epochs with a batch size of 512.
We use a base learning rate of 1.0, scaled linearly according

1As shown in [5], training with synthetic negatives for longer epochs
can harm performance, potentially making the learning task too difficult to
solve as the model converges.



to batch size. We employ a cosine learning rate schedule
with 5 warm-up epochs and set weight decay to 0.0. We
keep the backbones frozen throughout training. Importantly,
we do not apply any other regularization techniques such as
gradient clipping or logits regularization, as these can mask
the true quality of learned representations.

6.3. ImageNet-100 Subsets
The list of classes from ImageNet-100 is randomly sampled
from the original ImageNet ILSVRC-2012 dataset and is the
same as that used in [15]. The list is shown in Table 3.

Table 3. The list of classes from ImageNet-100, which are randomly
sampled from the original ImageNet ILSVRC-2012 dataset.

List of ImageNet-100 classes
n02869837 n01749939 n02488291 n02107142
n13037406 n02091831 n04517823 n04589890
n03062245 n01773797 n01735189 n07831146
n07753275 n03085013 n04485082 n02105505
n01983481 n02788148 n03530642 n04435653
n02086910 n02859443 n13040303 n03594734
n02085620 n02099849 n01558993 n04493381
n02109047 n04111531 n02877765 n04429376
n02009229 n01978455 n02106550 n01820546
n01692333 n07714571 n02974003 n02114855
n03785016 n03764736 n03775546 n02087046
n07836838 n04099969 n04592741 n03891251
n02701002 n03379051 n02259212 n07715103
n03947888 n04026417 n02326432 n03637318
n01980166 n02113799 n02086240 n03903868
n02483362 n04127249 n02089973 n03017168
n02093428 n02804414 n02396427 n04418357
n02172182 n01729322 n02113978 n03787032
n02089867 n02119022 n03777754 n04238763
n02231487 n03032252 n02138441 n02104029
n03837869 n03494278 n04136333 n03794056
n03492542 n02018207 n04067472 n03930630
n03584829 n02123045 n04229816 n02100583
n03642806 n04336792 n03259280 n02116738
n02108089 n03424325 n01855672 n02090622

7. Synthetic Hard Negatives
Applying the formulation from [5], we implement six
functions F1,F2, ...,F6 for generating synthetic negatives
N1, N2, . . . , N6, each providing a different instantiation of
F in Equation (2):

F1(q,QN ;α) = α · q+ (1− α) · ni (3)

F2(q,QN ;β) = ni + β · (ni − q) (4)

F3(q,QN ; γ) = γ · ni + (1− γ) · nj (5)

F4(q,QN ;σ) = ni +N (0, σ2 · I) (6)

F5(q,QN ; δ) = ni + δ · ∇ni
sim(q,ni) (7)

F6(q,QN ; η) = ni + η · sign(∇nisim(q,ni)) (8)

where ni,nj ∈ QN are randomly selected negative ex-
amples from the set of hardest negatives. The parameters
controlling generation include: α ∈ (0, 0.5) for interpo-
lation coefficient, β ∈ (1, 1.5) for extrapolation magni-
tude, γ ∈ (0, 1) for mixing weight between negatives, and
σ = δ = η = 0.01 for noise and perturbation strengths.
In these equations, I is the identity matrix, N (0, σ2 · I)
represents Gaussian noise with zero mean and variance σ2,
sim(·, ·) is the cosine similarity function, ∇ni denotes the
gradient with respect to ni, and sign(·) returns the element-
wise sign of the gradient. These functions produce synthetic
negatives through interpolation, extrapolation, feature mix-
ing, noise injection, gradient-based perturbation, and sign-
based adversarial perturbation, respectively [5].

8. Ablations
The effectiveness of synthetic negatives depends critically
on the selection of appropriate configuration parameters,
particularly the hardness selection value N and the num-
ber of synthetic negatives generated from each strategy. To
systematically explore this parameter space, we conducted
extensive ablation studies with different configurations. The
hardness selection value N determines how many of the most
challenging negative samples from the queue are considered
for synthetic negative generation. We experimented with
three different values: N ∈ {256, 512, 1024}. A smaller N
restricts the selection to only the most similar (and thus most
challenging) negatives, while a larger N includes a broader
range of negative samples in the synthesis process. For each
synthetic negative generation function Fi, the parameter Ni

controls how many synthetic negatives are created using
that particular strategy. To maintain tractable experimental
complexity, we grouped parameters as N1 = N2 = N3

and N4 = N5 = N6, and tested various combinations:
(N1, N4) ∈ { (64, 32), (128, 64), (128, 128), (256, 64),
(256, 128), (256, 256), (512, 64), (512, 128), (512, 256) }.
The proportion of synthetic negatives relative to real nega-
tives can be quantified as:

p =

∑6
i=1 Ni

K +
∑6

i=1 Ni

(9)

where K = 4096 is the queue size and
∑6

i=1 Ni represents
the total number of synthetic negatives.



Broader Impact
The improvements demonstrated by SynBY have potential
implications beyond the specific task of image classification.
Our approach contributes to more data-efficient deep learn-
ing. This is particularly valuable in domains where labeled
data is scarce or expensive to obtain.
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