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Abstract

Contrastive learning has become a dominant approach in
self-supervised visual representation learning, but efficiently
leveraging hard negatives, which are samples closely re-
sembling the anchor, remains challenging. We introduce
SynCo (Synthetic negatives in Contrastive learning), a novel
approach that improves model performance by generating
synthetic hard negatives on the representation space. Build-
ing on the MoCo framework, SynCo introduces six strate-
gies for creating diverse synthetic hard negatives “on-the-
fly” with minimal computational overhead. SynCo achieves
faster training and strong representation learning, surpass-
ing MoCo-v2 by +0.4% and MoCHI by +1.0% on ImageNet
ILSVRC-2012 linear evaluation. It also transfers more effec-
tively to detection tasks achieving strong results on PASCAL
VOC detection (57.2% AP) and significantly improving over
MoCo-v2 on COCO detection (+1.0% AP bb) and instance
segmentation (+0.8% APmsk). Our synthetic hard negative
generation approach significantly enhances visual represen-
tations learned through self-supervised contrastive learning.

1. Introduction

Contrastive learning has emerged as a prominent approach
in self-supervised learning, significantly advancing represen-
tation learning from unlabeled data through sophisticated
feature space optimization techniques and novel architec-
tural innovations. This technique, which distinguishes be-
tween similar and dissimilar data pairs, has shown remark-
able promise in visual representation tasks across diverse
domains and applications. Seminal works such as SimCLR
[11] and MoCo [27] established instance discrimination as a
pretext task. These methods generate multiple views of the
same data point through augmentation, training the model to
minimize distance between positive pairs (augmented views
of the same instance) while maximizing it for negative pairs
(views of different instances).

Figure 1. SynCo extends MoCo [13, 27] by introducing synthetic
hard negatives generated “on-the-fly” from a memory queue. The
process begins with two augmented views of an image, xq and xk,
processed by an encoder and a momentum encoder, respectively,
producing feature vectors q and k. The memory queue holds neg-
ative samples n1,n2, . . ., which are concatenated with synthetic
hard negatives s1, s2, . . . generated using the SynCo strategies.
These combined negatives are used to compute the affinity matrix,
which, together with the positive pair (query q and key k), con-
tributes to the InfoNCE loss calculation.

Despite its effectiveness, instance discrimination faces
significant computational and methodological challenges. A
key limitation is the need for numerous negative samples,
often leading to increased computational costs and memory
requirements. For example, SimCLR requires large batch
sizes for sufficient negatives [11]. While approaches like
MoCo address some issues through dynamic queues and
momentum encoders [13, 27], they still face challenges in
selecting and maintaining high-quality hard negatives. Some
variations, like SimCo [65], take a different approach by
removing both the momentum encoder and queue in favor of
a dual temperature mechanism that modulates positive and
negative sample distances differently in the InfoNCE loss.
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Recent studies have highlighted the importance of data
augmentations in learning robust representations [4, 11, 17,
22, 41, 44, 47, 53]. These transformations provide diverse,
challenging copies of images, increasing the difficulty of
the self-supervised task. Moreover, techniques that combine
data at the pixel level [63, 66] or feature level [51] have
proven effective in helping models learn resilient features.
The concept of challenging negative samples has been ex-
plored to enhance contrastive learning, with MoCHI [32]
showing improvements by incorporating harder negatives.

The concept of challenging negative samples has been
explored as a way to enhance contrastive learning models.
These samples, which lie close to the decision boundary,
are crucial for refining the model’s discriminative abilities.
Recent work like MoCHI [32] has shown improvements by
incorporating harder negatives. However, while the potential
of hard negatives is clear, recent trends in AI have shifted
focus toward large-scale foundation models [2, 8], leaving
this direction relatively unexplored. Yet, as Yann LeCun
observed, “if AI is a cake, self-supervised learning is the
bulk of the cake”. We argue that revisiting self-supervised
approaches, particularly through innovative hard negative
strategies, remains crucial for advancing AI systems.

In this paper, we present SynCo (Synthetic negatives in
Contrastive learning), a novel approach to contrastive learn-
ing that leverages synthetic hard negatives to improve the
learning process. Building on the foundations of MoCo,
SynCo introduces six distinct strategies for generating syn-
thetic hard negatives, each designed to provide diverse and
challenging contrasts to the model. Our approach focuses
on leveraging only the most challenging negatives (deter-
mined by their similarity scores with the query) to create
new synthetic negatives that are both difficult and diverse.
By incorporating these synthetic samples, SynCo aims to
push the boundaries of contrastive learning, improving both
the efficiency and effectiveness of the training process.

The main contributions of our work are as follows:

• We introduce SynCo, a contrastive learning framework that
improves representation learning by leveraging synthetic
hard negatives. SynCo enhances model discrimination by
generating challenging negatives “on-the-fly” from a mem-
ory queue using six strategies targeting different aspects
of the feature space. This process improves performance
without significant computational overhead.

• SynCo’s strategies extend MoCHI [32] by (i) exploring
boundaries beyond existing negatives and (ii) combining
gradient-guided perturbations with controlled stochastic
noise, improving uniformity (Figure 3) and inter-/intra-
class distances (Figure 4).

• We show improvements across multiple downstream
tasks: ImageNet linear evaluation (Tabs. 1 and 2), semi-
supervised learning (Tab. 3), and object detection (Tab. 4).

2. Related Work

2.1. Contrastive Learning

Contrastive learning methods focus on instance discrimina-
tion as a pretext task, treating each image as its own class
[11, 27]. The core principle involves bringing an anchor
and a “positive” sample closer in the representation space
while pushing the anchor away from “negative” samples
[33]. Positive pairs are created through multiple views of
each data point [9, 47], using techniques such as color de-
composition [46], random augmentation [11, 27], image
patches [50], or student-teacher representations [10, 23, 40].
The common training objective, based on InfoNCE [50]
or its variants [11, 17, 48, 62], aims to maximize mutual
information [3, 28], necessitating numerous negative pairs.
While some approaches like SimCLR use large batch sizes
[11], others like MoCo [13, 27], PIRL [38], and InstDis [57]
employ memory structures. Recent advancements explore
strategies such as regularizers [6, 7, 39, 69] or prevent model
collapse via redundancy reduction [5, 64]. Some methods
eliminate negative samples through asymmetric Siamese
structures [10, 12, 23, 40]. While other approaches address
the false-negative pair issue [34, 70] and improve represen-
tation learning by separating the learning of features and
metrics into distinct phases [62].

2.2. Hard Negatives

Hard negatives are critical in contrastive learning as they
improve visual representations by helping define the repre-
sentation space more effectively. These challenging samples
are harder to distinguish from the anchor point, enabling
the model to better differentiate between similar features.
The use of hard negatives involves selecting samples that
are similar to positive samples but different enough to aid in
learning distinctive features. MoCo [27] maintains challeng-
ing negatives via dynamic queues and momentum updates,
while SimCLR [11] and InfoMin [47] adjust negative diffi-
culty through augmentation techniques. Recent work has
examined optimal sampling strategies [31, 43], semantic
negative sampling [21], and broader negative sampling im-
pacts [61]. Building on these ideas, MoCHI [32] proposes
interpolation between query and hard negatives, and linear
combination of pairs of hard negatives. While these geomet-
ric transformations provide improvements, they are limited
to exploring the convex hull of existing hard negatives. Our
work significantly extends this foundation in three key di-
rections: (i) Boundary exploration: Type 2 (extrapolation)
pushes beyond the convex hull to explore regions outside
existing negatives; (ii) Gradient-guided generation: Types
5-6 leverage optimization landscape information for princi-
pled perturbations rather than geometric mixing alone; (iii)
Stochastic robustness: Type 4 introduces controlled noise to
prevent overfitting to specific negative patterns.
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3. Preliminaries
In this section, we establish the theoretical foundations of
contrastive learning and analyze the critical role of hard
negatives in representation learning.

3.1. Contrastive Learning
Contrastive learning seeks to differentiate between similar
and dissimilar data pairs, often treated as a dictionary look-
up where representations are optimized to align positively
paired data through contrastive loss in the representation
space [27]. Given an image x, and a distribution of image
augmentation T , we create two augmented views of the same
image using the transformation tq, tk ∼ T , i.e., xq = tq(x)
and xk = tk(x). Two encoders, fq and fk, namely the query
and key encoders, generate the vectors q = fq(xq) and
k = fk(xk), respectively. The learning objective minimizes
a contrastive loss using the InfoNCE criterion [50]:

L(q,k,Q) = − log
exp(q⊤ · k/τ)

exp(q⊤ · k/τ) + ∑
n∈Q

exp(q⊤ · n/τ)
(1)

Here, k is fk’s output from the same augmented image as q,
and Q = {n1,n2, . . . ,nK} includes outputs from different
images, representing negative samples of size K. The tem-
perature parameter τ adjusts scaling for the ℓ2-normalized
vectors q and k. The key encoder fk can be updated in
two ways. In the synchronized update approach, fk is up-
dated synchronously with fq , maintaining identical weights
throughout training [11]. Alternatively, a momentum up-
date scheme can be employed, where fk is updated using:
θk ← m · θk + (1 −m) · θq [27]. Here, θk and θq are the
parameters of fk and fq, and m ∈ [0, 1] is the momentum
coefficient. This approach allows fk to evolve slowly, provid-
ing consistent negative samples and stabilizing the learning
process. The memory bank Q can be defined as an external
memory of all dataset images [38, 46, 57], a queue of recent
batches [27], or the current minibatch [11].

The gradient of the contrastive loss in Equation (1) with
respect to the query q is given by:

∂L(q,k,Q)
∂q

= −1

τ

(
(1− pk) · k−

∑
n∈Q

pn · n
)

(2)

where

pzi =
exp(q⊤ · zi/τ)∑
j∈Z exp(q⊤ · zj/τ)

(3)

with zi being a member of the set Q ∪ {k}. The posi-
tive and negative logits contribute to the loss similarly to a
(K + 1)-way cross-entropy classification, with the key logit
representing the query’s latent class [1].

3.2. Understanding Hard Negatives
The effectiveness of contrastive learning approaches hinges
critically on the utilization of hard negatives [1, 24, 30, 32,
37, 57]. Current approaches face significant challenges in
efficiently leveraging these hard negatives. Sampling from
within the same batch necessitates larger batch sizes [11, 14].
Conversely, maintaining a memory bank containing represen-
tations of the entire dataset incurs substantial computational
overhead in keeping the memory up-to-date [13, 27, 38, 57].
These limitations underscore the need for more efficient
strategies to generate and utilize hard negatives in contrastive
learning frameworks.

Hardness of negatives. The “hardness” of negative sam-
ples, defined by their similarity to positive samples in the rep-
resentation space, determines how challenging they are for
the model to differentiate, directly impacting the effective-
ness of the contrastive learning process. Figure 2a illustrates
the evolution of negative sample hardness during MoCo-v2
training. Initially, the distribution of these probabilities is
relatively uniform. However, as training progresses, a clear
trend emerges: fewer negatives contribute significantly to
the loss function. This observation suggests that the model
rapidly learns to distinguish most negatives, leaving only a
small subset that remains challenging. Such a phenomenon
underscores the importance of maintaining a diverse pool
of hard negatives throughout the training process to sustain
effective learning [32].

Difficulty of the proxy task. The difficulty of the proxy
task in contrastive learning, typically defined by the self-
supervised objective, significantly influences the quality of
learned representations. Figure 2b compares the proxy task
performance of MoCo and MoCo-v2 on ImageNet-100, mea-
sured by the percentage of queries where the key ranks above
all negatives. Notably, MoCo-v2, which employs more ag-
gressive augmentations, exhibits lower proxy task perfor-
mance compared to MoCo, indicating a more challenging
learning objective. Paradoxically, this increased difficulty
correlates with improved performance on downstream tasks
such as linear classification [32]. Additionally, Figure 2c
demonstrates how SynCo’s performance varies under dif-
ferent configurations, providing insights into the optimal
parameter settings for balancing proxy task difficulty and
representation quality. The complete SynCo framework con-
sistently outperforms each individual strategy (types 1-6)
when applied in isolation. This counterintuitive relationship
between proxy task difficulty and downstream performance
suggests that more challenging self-supervised objectives
can lead to the learning of more robust and transferable
representations, motivating the development of strategies to
dynamically modulate task difficulty during training.
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Figure 2. ImageNet-100 experiments. (a) Histogram of the top 1024 matching probabilities pzi , zi ∈ Q for MoCo-v2 over various
epochs. Logits are organized in descending order, and each line indicates the mean matching probability across all queries. (b) Performance
comparison of MoCo, MoCo-v2, MoCHI, SynCo in terms of accuracy on the proxy task (percentage of queries where the key is ranked
higher than all negatives). (c) Performance comparison of SynCo under various configurations in terms of accuracy on the proxy task.

4. Synthetic Hard Negatives in Contrastive
Learning

In this section, we present an approach for generating syn-
thetic hard negatives in the representation space using six
distinct strategies. Building on MoCHI, we propose four
additional strategies for generating synthetic hard negatives
that explore complementary aspects of the representation
space (see supplementary material for differences from our
method). We refer to our proposed approach as SynCo
(“Synthetic negatives in Contrastive learning”).

4.1. Generating Synthetic Hard Negatives
Let q represent the query image, k its corresponding key, and
n ∈ Q denote the negative features from a memory structure
of size K. The loss associated with the query is computed us-
ing the logits ℓ(zi) = q⊤ ·zi/τ , which are processed through
a softmax function. We define Q̂ = {n1,n2, . . . ,nK} as the
ordered set of all negative features, where ℓ(ni) > ℓ(nj) for
all i < j, implying that the negative features are sorted based
on decreasing similarity to the query. The most challenging
negatives are selected by truncating the ordered set Q̂, re-
taining only the first N < K elements, denoted as Q̂N . For
the remainder of this section, let S(i) = {s(i)1 , s

(i)
2 , . . . , s

(i)
Ni
}

denote the set of synthetic negatives to be generated for type
i, where i ∈ {1, 2, 3, 4, 5, 6} represents the six different
synthetic negative generation strategies and Ni denotes the
cardinality of each set (i.e., the number of synthetic nega-
tives generated for the i-th strategy). Note that all synthetic
hard negatives are ℓ2-normalized before added to the set of
negative logits for the query.

Interpolated synthetic negatives (type 1). Our first strat-
egy creates synthetic negatives through controlled interpo-
lation between samples, similar to MoCHI’s type 2. This
approach aims to generate features that lie in meaningful

regions of the representation space between the query and
existing hard negatives. For each query q, we propose to
generate N1 synthetic hard negative features by mixing the
query q with a randomly chosen feature from the N hardest
negatives in Q̂N . Then a synthetic negative feature s1k ∈ S1

is given by:

s1k = αk · q+ (1− αk) · ni, αk ∈ (0, αmax) (4)

where ni ∈ Q̂N and αk is randomly sampled from a uniform
distribution in the range (0, αmax). Interpolation creates a
synthetic embedding that lies between the query and the
negative in the representation space. We set αmax = 0.5 to
guarantee that the contribution of the query is always less
than that of the negative.

Extrapolated synthetic negatives (type 2). As a natu-
ral extension of interpolation, we propose extrapolation to
explore the “opposite” direction in feature space. While
this approach operates further from the decision boundary,
we carefully control the exploration through coefficients to
balance the difficulty of synthetic negatives, ensuring they
provide meaningful learning signals without making the con-
trastive task intractable. For each query q, we propose to
generate N2 hard negative features by extrapolating beyond
the query embedding in the direction of the hardest negative
features. Similar to the interpolated method, we use a ran-
domly chosen feature from the N hardest negatives in Q̂N .
Then s2k ∈ S2 is given by:

s2k = ni + βk · (ni − q), βk ∈ (1, βmax) (5)

where ni ∈ Q̂N and βk is randomly sampled from a uniform
distribution in the range (1, βmax). Extrapolation generates a
synthetic embedding that lies beyond the query embedding in
the direction of the hardest negative. We choose βmax = 1.5.
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Mixup synthetic negatives (type 3). We propose to gen-
erate challenging synthetic negatives by combining pairs of
hard negative examples, similar to MoCHI’s type 1. For each
query q, we generate N3 hard negative features by combin-
ing pairs of the N hardest existing negative features in Q̂N .
For s3k ∈ S3 we have:

s3k = γk · ni + (1− γk) · nj , γk ∈ (0, 1) (6)

where ni,nj ∈ Q̂N and γk is randomly sampled from a
uniform distribution in the range (0, 1). Mixup combines
pairs of the hardest existing negative features to create a
synthetic embedding that represents a blend of challenging
cases.

Noise-injected synthetic negatives (type 4). To prevent
overfitting to specific negative patterns while maintaining
the essential characteristics of hard negatives, we introduce
controlled stochasticity through noise injection. For each
query q, we propose to generate N4 hard negative features
by adding Gaussian noise to the hardest negative features.
Each synthetic negative feature s4k ∈ S4 is given by:

s4k = ni +N (0, σ2 · I) (7)

where ni ∈ Q̂N and N (0, σ2 · I) represents Gaussian noise
with standard deviation σ (where I is the identity matrix).
Noise injection adds Gaussian noise to the hardest nega-
tive features, resulting in a synthetic embedding with added
randomness.

Perturbed synthetic negatives (type 5). Drawing inspira-
tion from adversarial training [36], we introduce perturbed
synthetic negatives that use gradient-based perturbations
with variable magnitudes. For each query q, we propose to
generate N5 hard negative features by perturbing the embed-
dings of the hardest negative features. We formulate each
synthetic negative feature s5k ∈ S5 as:

s5k = ni + δ · ∇ni
sim(q,ni) (8)

where ni ∈ Q̂N and sim(·, ·) is the similarity function and δ
controls the perturbation magnitude. Perturbation modifies
the embeddings of the hardest negative features based on
the gradient of the similarity function, creating synthetic
negatives that are slightly adjusted to be more challenging
for the model. This approach offers greater flexibility than
fixed interpolation, as it generalizes to arbitrary similarity
functions and can generate negatives of varying hardness.

Adversarial synthetic negatives (type 6). While similar
in concept to type 5, adversarial synthetic negatives differ
fundamentally in their gradient scaling approach. For each

query q, we propose to generate N6 hard negative features
by applying adversarial perturbations to the hardest negative
features to maximize their similarity to the query embed-
dings. Each synthetic negative s6k ∈ S6 is defined as:

s6k = ni + η · sign(∇ni
sim(q,ni)) (9)

where ni ∈ Q̂N and η controls the perturbation magnitude.
Adversarial hard negatives apply adversarial perturbations
to the hardest negative features, specifically altering them to
maximize their similarity to the query embeddings, thereby
producing the most challenging contrasts. Where type 5
allows variable perturbation sizes, type 6 enforces unit mag-
nitude through the sign function.

4.2. Integrating Synthetic Hard Negatives into the
Contrastive Loss

The synthetic hard negatives generated are integrated into
the contrastive learning process by modifying the InfoNCE
loss. Let S =

⋃6
i=1 S

(i) represent the concatenation of all
synthetic hard negatives, where S(i) is the set of synthetic
negatives generated by the i-th strategy. This combined set
of synthetic negatives augments the original negatives Q,
providing a more diverse and challenging set of contrasts for
the query. The modified InfoNCE loss is given by:

L(q,k,Q,S) = − log
exp(q⊤ · k/τ)

exp(q⊤ · k/τ) + Z
(10)

where Z represents the negative samples:

Z =
∑
n∈Q

exp(q⊤ · n/τ)

memory-based negatives

+
∑
s∈S

exp(q⊤ · s/τ)

synthetic negatives

.

(11)
Here, Q is the set of original memory-based negatives, and
S is the set of all synthetic hard negatives. By incorporating
both real and synthetic negatives, the model is exposed to
a wider variety of challenging examples, which encourages
learning more robust and generalizable representations. The
overall computational overhead of SynCo is roughly equiv-
alent to increasing the queue/memory by

∑6
i=1 Ni ≪ K,

along with the additional yet negligible cost of generating the
synthetic negatives. Since synthetic negatives are generated
“on-the-fly” during training and can be efficiently computed
in parallel with the forward pass, the additional computa-
tional cost is marginal compared to the base contrastive
learning framework. Moreover, the memory footprint re-
mains manageable as synthetic negatives do not need to be
stored persistently in the memory bank. Section 8 of the sup-
plementary material provides a detailed description of the
SynCo algorithm (see Algorithm 1-7), with a toy illustration
in Section 10.12 of the supplementary.
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5. Experiments
In this section, we present comprehensive experiments
demonstrating SynCo’s effectiveness on ImageNet linear
evaluation, semi-supervised learning, and transfer learning
to object detection. The supplementary material contains:
(i) implementation details (Sec. 9); (ii) Type 1–6 ablations
(Sec. 11.1); (iii) hyperparameter sensitivity (σ, δ, η, N , Ni,
K, Sec. 11.2); (iv) vision transformer experiments [16, 49]
(Sec. 10.13); (v) robustness (Sec. 10.6, 10.7); (vi) visualiza-
tions, e.g., t-SNE (Sec. 10.8), GradCAM (Sec. 10.9), UMAP
(Sec. 10.10), nearest neighbor retrieval (Sec. 10.11).

5.1. Implementation Details
We pretrain SynCo on ImageNet ILSVRC-2012 [15] us-
ing a ResNet-50 encoder [25]. Our method builds upon
MoCo-v2 [13]; thus, it is only fair to compare against other
MoCo-based methods [13, 32, 34, 62], which share similar
architectures and training setups (see bold entries in Tables 1
to 4, indicating the best performance among MoCo-based
methods-we underline the second best). For training we
use K = 65k. For SynCo, we also have a warm-up of 10
epochs, i.e. for the first epochs we do not synthesize hard
negatives. We empirically set SynCo’s hyperparameters σ,
δ, η to 0.01. For hard negative generation, we use the top
N = 1024 hardest negatives, with N1 = N2 = N3 = 256
and N4 = N5 = N6 = 64. For ImageNet linear evaluation,
we train a linear classifier on frozen features for 100 epochs,
using a batch size of 256 and a cosine learning rate schedule
(lr = 30.0). To evaluate transfer learning, we apply SynCo
to object detection tasks. For PASCAL VOC [19], we fine-
tune a Faster R-CNN [42] on trainval07+12 and test on
test2007. For COCO [35], we use a Mask R-CNN [26],
fine-tuning on train2017 and evaluating on val2017.
We employ Detectron2 [56] and report standard AP metrics,
following [27] without additional tuning.

5.2. Linear Evaluation on ImageNet
We evaluate SynCo by training a linear classifier on
ImageNet-pretrained frozen features. With 200 epochs of
pretraining, SynCo obtains 67.9% ± 0.16% top-1 accuracy
and 88.0% ± 0.05% top-5, showing clear gains over MoCo-
based methods (+0.4% over MoCo-v2, +1.0% over MoCHI,
+0.3% over PCL-v2 and DCL). While MoCHI’s hard nega-
tive generation yields lower performance than MoCo-v2, our
synthetic hard negatives provide consistent and stable im-
provements. With 800 epochs, SynCo reaches 70.7% top-1
(+2.0% over MoCHI). An extended comparison is provided
in Sec. 11.1 of the supplementary material. However, at
800 epochs, it still does not surpass MoCo-v2, similar to
MoCHI, likely due to an overly hard proxy task. We ob-
serve that SynCo’s performance plateaus around epoch 400
(see Sec. 10.3, Fig. 5 of the supplementary), indicating that
continued synthetic negative generation makes the proxy

Method Top-1 Top-5

Supervised 76.5 -
PIRL [38] 63.6 -
LA [70] 60.2 -
CMC [46] 60.0 -
SimSiam [12] 68.1 -
ReSSL [67] 62.9 -
AdCo [29] 68.6 -
SimCLR + DCL [62] 65.8 -

MoCo-based
MoCo [27] 60.7 ↓6.8 -
PCL-v1 [34] 61.5 ↓6.0 -
MoCo-v2 [13] (baseline) 67.5 ↑0.0 90.1
MoCHI [32] 66.9 ↓0.6 -
PCL-v2 [34] 67.6 ↑0.1 -
MoCo-v2 + DCL [62] 67.6 ↑0.1 -
MoCo-v2 + NS [21] 67.9 ↑0.4 -

SynCo (ours) 67.9/68.1 ↑0.6 88.0

Table 1. Linear evaluation on ImageNet ILSVRC-2012. Top-1
and top-5 accuracies (in %) with 200 epochs of pretraining using
ResNet-50. Results for SynCo are given as avg./max over 3 runs.

Method Epochs Top-1 Top-5

InfoMin [47] 800 73.0 91.1
SimSiam [12] 800 68.1 -
SimCLR [11] 1000 69.3 -
BYOL [23] 1000 74.3 91.6
DINO [10] 800 75.3 -
Barlow Twins [64] 1000 73.2 91.0
AdCo [29] 800 72.8 -
VICReg [6] 1000 73.2 91.1
CaCo [54] 800 74.1 -
All4One [18] 800 66.6 87.5

MoCo-based
MoCo-v2 [13] 800 71.1 ↑0.0 90.1
MoCHI [32] 800 68.7 ↓2.4 -

SynCo (ours) 800 70.7 ↓0.4 89.8
SynCo† (ours) 800 71.6 ↑0.5 90.5

Table 2. Linear evaluation on ImageNet ILSVRC-2012. Top-
1 and top-5 accuracies (in %) for models trained with extended
epochs using ResNet-50. Results for SynCo are based on 1 run.
† We stop generating synthetic negatives at epoch 400.

task increasingly challenging in later stages. Motivated by
this observation, we stop generating synthetic negatives after
epoch 400, allowing the model to consolidate learned fea-
tures without overwhelming the contrastive objective; this
yields 71.6% top-1, a +0.5% improvement over MoCo-v2.
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Method Epochs Top-1 Top-5

1% 10% 1% 10%

Supervised 25.4 56.4 48.4 80.4
InstDis [57] 200 - - 39.2 77.4
PIRL [38] 800 30.7 60.4 57.2 83.8
SimCLR [11] 1000 48.3 65.6 75.5 87.8
BYOL [23] 1000 53.2 68.8 78.4 89.0
SwAV [9] 800 53.9 70.2 78.5 89.9
Barlow Twins [64] 1000 55.0 69.7 79.2 89.3
VICReg [6] 1000 54.8 69.5 79.4 89.5
All4One [18] 800 39.0 - 60.0 -

MoCo-based
MoCo-v2 (repr.) 800 48.2 66.1 75.8 87.6
PCL-v1 [34] 200 - - 75.3 85.6
PCL-v2 [34] 200 - - 73.9 85.0
MoCHI (repr.) 800 50.4 65.7 76.2 87.2

SynCo (ours) 800 50.8 66.6 77.5 88.0
SynCo† (ours) 800 51.2 67.1 78.0 88.7

Table 3. Semi-supervised learning on ImageNet ILSVRC-2012.
Top-1 and top-5 accuracies with 1% and 10% training examples
using ResNet-50. Results for SynCo are averaged over 3 runs.

5.3. Semi-supervised Training on ImageNet
We evaluate SynCo in a semi-supervised setting using 1%
and 10% of labeled ImageNet data (and 100% in Sec. 10.4,
Fig. 6 of the supplementary). Results in Table 3 show that
with 1% labels, SynCo achieves 50.8% ± 0.21% top-1 accu-
racy (+25.4% over supervised baseline, +2.6% over MoCo-
v2, +2.5% over SimCLR) and 77.5% ± 0.12% top-5 ac-
curacy. With 10% labels, it reaches 66.6% ± 0.19% top-1
(+10.2% over supervised, +0.5% over MoCo-v2, +1.0%
over SimCLR) and 88.0% ± 0.10% top-5 accuracy. Inter-
estingly, when we stop generating synthetic negatives after
epoch 400, similar to our observation in linear evaluation,
performance improves further to 51.2% ± 0.23% top-1 and
78.0% ± 0.14% top-5 with 1% labels, and 67.1% ± 0.20%
top-1 and 88.7% ± 0.11% top-5 with 10% labels.

5.4. Transferring to Detection
We evaluate the SynCo representation, pretrained for 200
epochs, by applying it to detection tasks. Results in Table 4
and Sec. 10.2 (Tab. 9) of the supplementary show that on
PASCAL VOC, SynCo achieves strong results comparable
to MoCHI, while significantly outperforming the supervised
baseline (+3.7 AP). On the more challenging COCO dataset,
with 1× schedule, SynCo shows consistent improvements
over the supervised baseline (APbb +1.7, APmsk +1.6) and
MoCo-v2 (APbb +1.0, APmsk +0.8). SynCo achieves com-
petitive performance with detection-specific methods, show-
ing comparable results to DetCo [59] and InsLoc [60].
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Figure 3. Alignment and uniformity on ImageNet-100. Com-
parison of MoCo-v2, MoCHI, and SynCo (various configurations).
The x- and y-axis represent −Luniform and −Lalign, respectively. The
model with the highest performance is located in the upper-right
corner of the chart.
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Figure 4. Distribution of the ratio between inter-class and intra-
class distances for MoCo-based methods on ImageNet ILSVRC-
2012. Higher values indicate better class separation. For clarity,
we only show MoCo-v2 (800 epochs), PCL-v2 (200 epochs), and
SynCo (800 epochs).

6. Discussion

This section examines how synthetic negatives affect proxy
task difficulty and shape representation space utilization.

6.1. Is the Proxy Task More Difficult?

We observe that incorporating synthetic negatives leads
to faster learning and improved performance. Each syn-
thetic negative type accelerates learning compared to MoCo-
v2, with the full SynCo configuration showing the most
significant improvement and lowest final proxy task per-
formance, as shown in Figure 2b. This indicates SynCo
presents the most challenging proxy task, evidenced by
max ℓ(sik) > max ℓ(nj), where sik ∈ Si are synthetic nega-
tives and nj ∈ Q̂N are original negatives. Through SynCo,
we modulate proxy task difficulty via synthetic negatives,
pushing the model to learn more robust features.
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Method Epochs
COCO 1× schedule COCO 2× schedule PASCAL VOC

APbb APbb
50 APbb

75 APmsk APmsk
50 APmsk

75 APbb APbb
50 APbb

75 APmsk APmsk
50 APmsk

75 AP AP50 AP75

Supervised 200 38.2 58.2 41.2 33.3 54.7 35.2 40.0 59.9 43.1 34.7 56.5 36.9 53.5 81.3 58.8
Random init 200 26.4 44.0 27.8 29.3 46.9 30.8 35.6 54.6 38.2 31.4 51.5 33.5 33.8 60.2 33.1
SimSiam [12] 200 39.2 59.3 42.1 34.4 56.0 36.7 - - - - - - 57.0 82.4 63.7
BYOL [23] 300 - - - - - - 40.3 60.5 43.9 35.1 56.8 37.3 51.9 81.0 56.5
SwAV [9] 800 38.4 58.6 41.3 33.8 55.2 35.9 - - - - - - 56.1 82.6 62.7
SimCLR [11] 1000 - - - - - - 40.3 60.5 43.9 35.1 56.8 37.3 56.3 81.9 62.5
Barlow Twins [64] 1000 39.2 59.0 42.5 34.3 56.0 36.5 - - - - - - 56.8 82.6 63.4

Detection-specific
SoCo [55] 100 40.4 60.4 43.7 34.9 56.8 37.0 41.1 61.0 44.4 35.6 57.5 38.0 59.1 83.4 65.6
InsLoc [60] 200 39.5 59.1 42.7 34.5 56.0 36.8 41.4 60.9 45.0 35.9 57.6 38.4 57.9 82.9 64.9
DetCo [59] 200 39.8 59.7 43.0 34.7 56.3 36.7 41.3 61.2 45.0 35.8 57.9 38.2 57.8 82.6 64.2
ReSim [58] 200 39.7 59.0 43.0 34.6 55.9 37.1 - - - - - - 58.7 83.1 66.3

MoCo-based
MoCo [27] 200 38.5 58.3 41.6 33.6 54.8 35.6 40.7 60.5 44.1 35.4 57.3 37.6 55.9 81.5 62.6
MoCo-v2 [13] 200 38.9 58.4 42.0 34.2 55.2 36.5 40.7 60.5 44.1 35.6 57.4 37.1 57.0 82.4 63.6
MoCHI [32] 200 39.2 58.9 42.4 34.3 55.5 36.6 - - - - - - 57.5 82.7 64.4

SynCo (ours) 200 39.9 59.6 43.3 34.9 56.5 36.9 41.0 60.6 44.8 35.7 57.4 38.1 57.2 82.6 63.9

Table 4. Transfer learning results using R50-C4 on COCO with 1× and 2× training schedules and PASCAL VOC07+12. For COCO,
we report APbb (bounding box detection) and APmsk (instance segmentation). For VOC, we report standard AP metrics. Results for SynCo
are averaged over 3 runs.

6.2. Evaluating the Usage of the Representation
Space

To assess learned representations, we employ alignment and
uniformity metrics [52]. These metrics provide insights into
representation space utilization, with alignment quantify-
ing grouping of similar samples and uniformity measuring
spread across the hypersphere. Figure 3 presents results for
MoCo-based methods. Our findings demonstrate that SynCo
significantly improves representation uniformity compared
to MoCo-v2 and MoCHI, showing improved utilization of
the representation space. Furthermore, incorporating syn-
thetic negatives (types 1 to 6) leads to improved alignment.
These results suggest that SynCo’s approach yields stronger
and more well-distributed feature representations.

6.3. Class Concentration Analysis

To quantify the learned latent space structure, we examine
the relationship between within- and between-class distances.
Figure 4 (and Sec. 10.5, Fig. 7 of the supplementary) shows
the distribution of ratios between inter- and intra-class ℓ2-
distances for representations learned by MoCo-based con-
trastive methods. A higher mean ratio indicates better con-
centration within classes while maintaining greater separa-
tion between classes, reflecting improved linear separability
(aligned with Fisher’s linear discriminant analysis [20]). Af-
ter 800 training epochs, SynCo achieves a mean ratio of
1.384, surpassing MoCo-v2 (1.146) and PCL-v2 (0.988).

7. Conclusion
This paper introduces SynCo, a novel approach leveraging
synthetic hard negatives to enhance contrastive visual repre-
sentation learning. By generating diverse negatives “on-the-
fly” using six complementary strategies, SynCo demonstrates
consistent improvements over MoCo-based methods with-
out significant computational overhead. Our experiments
show gains on ImageNet linear evaluation, semi-supervised
learning, and transfer to detection tasks. The proposed strate-
gies are general and applicable to any contrastive method
utilizing InfoNCE loss, e.g., SimCLR [11].

Scope and fair comparison. We deliberately focus on
MoCo-based comparisons to ensure fair evaluation under
identical training conditions. Recent self-distillation meth-
ods like DINO-v2/v3 [40, 45] or iBOT [68] operate in funda-
mentally different paradigms, i.e., they use teacher–student
architectures, multiple crops, and train on billions of sam-
ples with larger computational budgets. Comparing SynCo
to these methods would conflate the benefits of synthetic
negatives with differences in architecture, data scale, and
training. Our contribution specifically targets improving con-
trastive learning through diverse negative sampling. Within
this scope, the consistent improvements across downstream
tasks validate our approach (Tabs. 1 to 4), since small gains
in self-supervised learning often translate to significant ben-
efits when deployed at scale (see Sec. 13).
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