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8. Algorithm

Algorithm | provides the pseudo-code of SynCo, followed
by the detailed implementation of the six distinct types of
synthetic hard negatives used in our approach (Algorithms 2
to 7).

9. Implementation Details

We implement SynCo in PyTorch [70] following the im-
plementation of MoCo'. Specifically, we follow the same
setting as MoCo-v2.

9.1. Pretraining

Datasets. We evaluate the proposed method on ImageNet
ILSVRC-2012% [22], which includes 1000 classes and
is commonly used in previous self-supervised methods
[14, 16, 100, 103]. The dataset consists of 1.28 million
training images and 50,000 validation images. We also con-
duct ablation studies on ImageNet-100 [50], a subset of
100 classes derived from ImageNet, with 126,689 training
images and 5,000 validation images. Both datasets are well-
balanced in class distribution, and the images contain iconic
views of objects, as is common in vision tasks [40, 100].

Augmentation. Each input image is transformed twice to
generate two different views. For SynCo, we use the same
augmentation as used in [17] and [49] for a fair comparison.
We transform each input image with two sampled augmen-
tations to produce two distorted versions of the input. The
augmentation pipeline consists of random cropping, resizing
to 224 x 224, randomly flipping the images horizontally,
applying color distortion, optionally converting to grayscale,
adding Gaussian blurring.

Architecture. Both the encoder f; and f; consist of a
backbone and a projection head. The encoder f, is updated
by the moving average of f,. As our base encoder, we adopt
ResNet-50 (2048 output units). The projection head is a
2-layer MLP, following [17]: the hidden layers of the MLP
are 2048-d and are with ReLLU [69]; the output layer of the
MLP is 128-d, without ReLLU.

Optimization. We follow the same setting as [17]. We
utilize the SGD optimizer [75] with a base learning rate of
0.03 (= 0.03 x batch_size/256), where we scale the learning
rate with the batch size as in [14], and a weight decay of
10~*. The training schedule begins with a warm-up period
during the first 10 epochs in which the learning rate linearly
increases from O to the base learning rate. Following this, the
learning rate gradually decreases to zero following a cosine
decay schedule without restarts. The batch size for ImageNet

TAvailable at: https://github.com/facebookresearch/
moco.
2Available at: https://www.image-net .org/.
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is set to 256 distributed over 4 NVIDIA L40 GPUs. The
total training duration is set to 200/800 epochs for ImageNet.
For pretraining, SynCo takes approximately 43 hours (1.8
days) and 8 kWh of power for 100 epochs.

Hyperparameters. We empirically set SynCo’s hyperpa-
rameters to o = 0.01, § = 0.01, and = 0.01. A thor-
ough analysis of these hyperparameters revealed no signifi-
cant difference in performance when these values are varied
within reasonable bounds (also see Section 1 1), indicating
that our method is robust to a range of practical settings.
For hard negative generation, we select the top N = 1024
hardest negatives and set Ny = Ny = N3 = 256 and
N, = N; = Ng = 64 to maintain a balanced total num-
ber of generated hard negatives. A detailed analysis of the
choice of N;, © = 1,...,6 is provided in Section 11. We
tested various similarity functions, including cosine similar-
ity, Euclidean, and Mahalanobis distances, for generating
gradient-based synthetic hard negatives. Our results revealed
no significant differences in model performance across these
similarity measures. Therefore, we opted to use the dot prod-
uct similarity function, which simplifies computation and
aligns with the InfoNCE loss used in SynCo’s contrastive
learning framework. For detailed configuration of SynCo
pretraining, including architecture and optimization parame-
ters, see Table 5.

9.2. Linear Evaluation

We follow the linear evaluation protocol of [42] and as in [14,
35, 52, 54, 85], which consists in training a linear classifier
on top of the frozen representation, i.e., without updating the
network parameters nor the batch statistics. At training time,
we apply spatial augmentations, i.e., random crops with
resize to 224 x 224 pixels, and random flips. At test time,
images are resized to 256 pixels along the shorter side using
bicubic resampling, after which a 224 x 224 center crop is
applied. In both cases, we normalize the color channels by
subtracting the average color and dividing by the standard
deviation, after applying the augmentations. We optimize
the cross-entropy loss using SGD with Nesterov momentum
over 100 epochs, using a batch size of 256 and a momentum
of 0.9. We do not use any regularization methods such
as weight decay, gradient clipping [21], tclip [4], or logits
regularization. We use a learning rate of 30.0 for ImageNet
ILSVRC-2012 and 10.0 for ImageNet-100. We train using 4
NVIDIA L40 GPUs.

9.3. Semi-supervised Training

We follow the semi-supervised learning protocol of [14, 35,
54, 101]. We first initialize the network with the parame-
ters of the pretrained representation, and fine-tune it with
a subset of ImageNet ILSVRC-2012 labels. At training
time, we apply spatial augmentations, i.e., random crops

Parameter Value
Architecture
Backbone ResNet-50
Projection head 2-layer MLP
Projection head activation ReLU
Optimization
Optimizer SGD
Momentum 0.9
Base learning rate 0.03
Weight decay 107
Warm-up 10 epochs
Batch size 256
Training epochs 200/800 epochs
Training time ~43 hours/100 epochs
MoCo
Queue size K 65536
Momentum m 0.999
Temperature 7 0.2
SynCo
Hardest negatives N 1024

Synthetic N;, i =1,2,3 256
Synthetic N;,© = 4,5,6 64
Hyperparameters o, §, 7 0.01

Table 5. Architecture and optimization hyperparameters used
for SynCo pretraining. This table lists all architectural, optimiza-
tion, MoCo, and SynCo-specific settings used during contrastive
pretraining.

with resize to 224 x 224 pixels and random flips. At test
time, images are resized to 256 pixels along the shorter side
using bicubic resampling, after which a 224 x 224 center
crop is applied. In both cases, we normalize the color chan-
nels by subtracting the average color and dividing by the
standard deviation (computed on ImageNet), after applying
the augmentations. We optimize the cross-entropy loss using
SGD with Nesterov momentum. We used a batch size of
1024, a momentum of 0.9. We do not use any regularization
methods such as weight decay, gradient clipping [21], tclip
[4], or logits rescaling. Similar to [10], we sweep over the
learning rates {0.01,0.02,0.05,0.1,0.005} and the number
of epochs {30, 60}. We train using 4 NVIDIA L40 GPUs.

9.4. Object Detection

We follow the object detection protocol of [17, 42]. We first
initialize the network with the parameters of the pretrained
representation, and fine-tune it on PASCAL VOC [28]® and
COCO [59]" datasets. During training, we apply spatial

3Available at https://host.robots.ox.ac.uk/pascal/
VvOC/.

4Available at ht tps: //cocodataset .org/.
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augmentations, specifically random resizing and random hor-
izontal flipping. During testing, images are resized to a fixed
size of 800 pixels along the shorter side. The R50-C4 back-
bones, similar to those used in Detectron2 [94], conclude at
the conv4 stage. Subsequently, the box prediction head is
composed of the conv5 stage, which includes global pool-
ing, followed by a BN layer. We train using 8§ NVIDIA RTX
6000 GPUs.

PASCAL VOC object detection. We use a Faster R-CNN
[73] with the SGD optimizer at a base learning rate of 0.02,
a momentum of 0.1, and a weight decay of 0.0001, and a
batch size of 16. The model is trained for 24,000 iterations
using a step learning rate scheduler, where the learning rate
is reduced at 18,000 and 22,000 iterations. Images are scaled
to 480 x 800 pixels during training and resized to 800 pixels
on the longer side for inference.

COCO object detection. We use a Mask R-CNN [41]
with the SGD optimizer at a base learning rate of 0.02, a
momentum of 0.1, and a weight decay of 0.0001, and a
batch size of 16. For the 1x schedule, the model trains
for 90,000 iterations with learning rate reductions at 60,000
and 80,000 iterations. For the 2x schedule, it trains for
180,000 iterations with learning rate reductions at 120,000
and 160,000 iterations. A warm-up period is applied for the
first 100 iterations. Images are resized to 640 x 800 pixels
during training and normalized to 800 pixels on the longer
side for inference.

9.5. Alignment and Uniformity

We follow the protocol of [49] but training the network 100
epochs on ImageNet-100. We calculate the alignment and
uniformity based on [90]. The alignment loss Lz, and
uniformity loss Lygiform are computed as follows:

Lalign(%,¥) = Ese,y)paas [1fa(x) = fe(y)lls]  (12)

Lunitorm (X) = 108 Ex y [eXp(—tqu(x) - fle()’)”%ﬂ

(13)
where x and y is a pair of positive images, « is a hyperpa-
rameter typically set to 2, and ¢ controls the sharpness of the
distribution, also set to 2. Here, pqat, represents the empiri-
cal distribution of the data, from which pairs of embeddings
(x,y) are sampled. We implement these losses in PyTorch
following the original implementation’.

SAvailable at: https://github.com/Ssnl/align_uniform.

List of ImageNet-100 classes

n02869837
nl3037406
n03062245
n07753275
n01983481
n02086910
n02085620
n02109047
n02009229
n01692333
n03785016
n07836838
n02701002
n03947888
n01980166
n02483362
n02093428
n02172182
n02089867
n02231487
n03837869
n03492542
n03584829
n03642806
n02108089

n01749939
n02091831
n01773797
n03085013
n02788148
n02859443
n02099849
n04111531
n01978455
n07714571
n03764736
n04099969
n03379051
n04026417
n02113799
n04127249
n02804414
n01729322
n02119022
n03032252
n03494278
n02018207
n02123045
n04336792
n03424325

n02488291
n04517823
n01735189
n04485082
n03530642
nl13040303
n01558993
n02877765
n02106550
n02974003
n03775546
n04592741
n02259212
n02326432
n02086240
n02089973
n02396427
n02113978
n03777754
n02138441
n04136333
n04067472
n04229816
n03259280
n01855672

n02107142
n04589890
n07831146
n02105505
n04435653
n03594734
n04493381
n04429376
n01820546
n02114855
n02087046
n03891251
n07715103
n03637318
n03903868
n03017168
n04418357
n03787032
n04238763
n02104029
n03794056
n03930630
n02100583
n02116738
n02090622

Table 6. List of classes from ImageNet-100. These classes are ran-
domly sampled from the original ImageNet ILSVRC-2012 dataset.

9.6. ImageNet-100 Subsets

The list of classes from ImageNet-100° is randomly sampled
from the original ImageNet ILSVRC-2012 dataset and is the
same as that used in [81]. The list is shown in Table 6.

9.7. Image Augmentations

During self-supervised training, SynCo uses the same aug-
mentation as [17]. The augmentation parameters are detailed
in Table 7.

10. Additional Results

In this section we present extended results starting with
object detection on PASCAL VOC, where SynCo demon-
strates faster training and matches MoCo-v2’s performance
at 800 epochs. We then analyze the representations learned
by SynCo through multiple perspectives. We examine the
model’s feature space using class concentration metrics, di-
mensionality reduction techniques (t-SNE, UMAP), and
nearest neighbor analysis to understand its semantic organi-

%Available at: //github.
blob/master/imagenet100.txt.

https: com/HobbitLong/CMC/
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Parameter T

Random crop probability 1.0
Horizontal flip probability 0.5
Vertical flip probability 0.8
Brightness adjustment max intensity 0.4
Contrast adjustment max intensity 0.4
Saturation adjustment max intensity 0.2
Hue adjustment max intensity 0.1
Color dropping probability 0.2
Gaussian blurring probability 0.5
Solarization probability 0.0

Table 7. Parameters used to generate image augmentations.
This table lists the augmentation probabilities and intensity settings
used for MoCo-v2 pretraining.

zation. We investigate the robustness of learned representa-
tions under distribution shifts (ImageNet variants), corrup-
tions, and adversarial attacks to assess their generalization
capabilities. Through GradCAM visualizations, we also
provide insights into which image regions contribute most
to the model’s feature extraction. These analyses collec-
tively demonstrate SynCo’s ability to learn discriminative
and robust visual representations.

10.1. Comparison with State-of-the-Art Methods

We present a comprehensive comparison with state-of-the-
art self-supervised learning methods in Table 8, including
instance discrimination methods (SimCLR [14], PIRL [67]),
momentum-based (BYOL [35], MoCo variants), clustering-
based (SWAV [10]), redundancy reduction (Barlow Twins
[100], VICReg [7]), and various hard negative mining strate-
gies (MoCHI [49], DCL [98], AdCo [48]). It is important
to note that methods such as BYOL [35], Barlow Twins
[100], SWAV [10], DINO [11], SimCLR-v2 [15], AdCo
[48], and VICReg [7] incorporate additional architectural
and training tricks, including larger projection heads, signif-
icantly larger projection dimensions (e.g., DINO with 65k
dimensions, Barlow Twins with 8k dimensions compared
to our 128 dimensions), multi-crop augmentation strategies
[10], and extended training schedules. While these modi-
fications improve performance, they stem from orthogonal
architectural choices rather than from core learning mecha-
nisms alone. Therefore, the most fair and direct comparison
is against MoCo-based approaches (MoCo [42], MoCo-v2
[17], MoCHI [49], PCL [56], DCL [98]), which share simi-
lar architectural choices, projection dimensions, and training
procedures, ensuring an equitable evaluation of our con-
tributions to hard negative mining. For more details, see
Section 13.

Method Epochs Top-1
Supervised 200 76.5
RotNet [33] 200 48.9
PIRL [67] 200 63.6
LA [106] 200 60.2
CMC [81] 200 60.0
InfoMin [82] 200 70.1
InfoMin [82] 800 73.0
SimSiam [16] 100 68.3
MSF [53] 200 72.4
ReSSL [105] 200 69.9
ReSSL [105]F 200 74.7
AdCo [48] 200 68.6
AdCo [48]F 800 75.7
SimCLR + DCL [98] 200 65.8
SimCLR + DCLW [98] 200 66.9
SimCLR [14] 1000 69.3
BYOL [35] 1000 74.3
W-MSE [26] 400 72.5
DINO [11]} 800 753
SwAV [10] 800 71.8
SwAV [10]* 800 753
Barlow Twins [100] 1000 73.2
ReLIC [68] 1000 70.3
UniGrad [80] 1000 70.3
VICRegL [8] 300 70.4
VICReg [7] 1000 73.2
CLSA [91] 800 72.2
Mixed Barlow Twins [5] 800 72.2
CaCo [92] 800 74.1
All4One [27] 800 66.6
MoCo-based
MoCo [42] 200 60.7
PCL-v1 [56] 200 61.5
MoCo-v2 [17] 200 67.5
MoCo-v2 [17] 800 71.1
MoCHI [49] 200 66.9
MoCHI [49] 800 68.7
PCL-v2 [56] 200 67.6
MoCo-v2 + DCL [98] 200 67.6
MoCo-v2 + NS [31] 200 67.9
SynCo (ours) 200 68.1
SynCo (ours) 800 70.7
SynCo' (ours) 800 71.6
Table 8. State-of-the-art linear evaluation on ImageNet

ILSVRC-2012. Top-1 accuracy (in %) for all methods, includ-
ing extended epochs. Epochs indicate pretraining duration. The
highest accuracy in each column is bolded and the second highest
is underlined. Symbols: I With multi-crop augmentation. T We
stop generating synthetic negatives at epoch 400.



Method Epochs AP AP, APss
Supervised 90 535 813 58.8
MoCo [42] 200 559 815 62.6

MoCo-v2 [17] 200 57.0 824 63.6
MoCo-v2 [17] 800 574 825 64.0

SynCo (ours) 200 572 826 639
SynCo (ours) 800 574 828  64.0

Table 9. Results for object detection on PASCAL VOC. The
values in bold indicate the maximum of each column.

10.2. Transferring to Detection

We evaluate the SynCo representation using a pretrained
ResNet-50 model trained for 800 epochs on VOC dataset.
The results are shown in Table 9. SynCo demonstrates faster
training, achieving better results at lower epochs compared to
MoCo-v2. At 200 epochs, SynCo already surpasses MoCo-
v2 in terms of A P5y and A Pr5. However, when training is
extended to 800 epochs, MoCo-v2 and SynCo perform on
par, with both methods reaching similar performance.

10.3. Linear Evaluation

Table 10 shows the progression of linear evaluation accu-
racy over training epochs, comparing MoCo-v2, SynCo, and
SynCo' (which stops generating synthetic negatives after
epoch 400). The results demonstrate that SynCo achieves
faster convergence in the early training stages compared to
MoCo-v2, reaching higher accuracy with fewer epochs. This
initial acceleration can be attributed to the synthetic hard
negatives providing more informative gradient signals that
help the model learn discriminative features more efficiently.

Performance plateau. However, a critical observation
emerges in the later stages of training: while standard SynCo
continues to generate synthetic negatives throughout the en-
tire 800-epoch training process, its performance begins to
plateau and even slightly decline after epoch 400. In con-
trast, SynCo', which stops generating synthetic negatives
after epoch 400, shows the best final performance. This
phenomenon can be explained through the lens of proxy task
difficulty modulation.

Early vs. late stage training. As training progresses, the
model becomes increasingly proficient at distinguishing be-
tween positive and negative pairs, making the original con-
trastive task easier. However, SynCo continues to generate
synthetic hard negatives that are specifically designed to
be challenging, effectively maintaining or even increasing
the difficulty of the proxy task. While this sustained diffi-
culty can be beneficial in early training stages—preventing
the model from prematurely converging to suboptimal so-

lutions—it becomes counterproductive in later stages when
the model needs to consolidate and refine its learned repre-
sentations.

Cooldown. The continued generation of synthetic hard
negatives in later epochs creates an overly challenging proxy
task that may force the model to focus on increasingly sub-
tle and potentially noisy distinctions rather than learning
robust, generalizable features. This aligns with our analy-
sis in the main paper, which shows that SynCo consistently
achieves lower proxy task accuracy (indicating higher diffi-
culty) compared to individual synthetic negative types. The
SynCof variant effectively provides a “cooling down” period
where the model can stabilize its representations without
the additional challenge of synthetic negatives, leading to
better downstream performance. This finding suggests that
dynamically modulating the difficulty of contrastive learn-
ing through controlled synthetic negative generation—rather
than maintaining constant difficulty—is crucial for optimal
representation learning.

10.4. Fine-tuning

We also evaluate SynCo’s performance when fine-tuning
with 100% of the labeled ImageNet data. As shown in Ta-
ble 11, SynCo demonstrates consistent improvements over
MoCo-based methods across all training data fractions. With
the full dataset (100% labels), SynCo achieves 79.0% top-1
accuracy, outperforming MoCo-v2 (77.0%) by +2.0% and
MoCHI (78.0%) by +1.0% . When stopping synthetic nega-
tive generation, we achieve even better results, i.e., 79.9%
top-1 accuracy. This comprehensive evaluation across 1%,
10%, and 100% of labeled data demonstrates that SynCo’s
synthetic hard negatives provide robust improvements regard-
less of the amount of available supervision, with particularly
pronounced benefits in low-data regimes where the quality
of learned representations becomes even more critical.

10.5. Class Concentration Analysis

To quantify the overall structure of the learned latent
space, we examine the relationship between within-class
and between-class distances. Figure 5 compares the distribu-
tion of ratios between inter-class and intra-class ¢-distances
of representations learned by different MoCo-based con-
trastive learning methods on the ImageNet validation set. A
higher mean ratio indicates that the representations are better
concentrated within their corresponding classes while main-
taining better separation between different classes, suggest-
ing improved linear separability (following Fisher’s linear
discriminant analysis principles [30]).

As shown in Table 12, SynCo trained for 800 epochs
achieves the highest mean ratio (1.384) among all MoCo-
based methods, approaching and slightly surpassing the su-
pervised baseline (1.381). A higher mean ratio indicates bet-



Method 100 200 300

400 500 600 700 800

MoCo-v2 [17] 64.2 67.5 68.5

69.2 70.3 70.6 70.9 71.1

SynCo (ours) 65.8 68.1 68.7
SynCo' (ours) 65.8 68.1 68.7

69.7 70.3 70.4 70.6 70.7
69.7 70.5 70.8 71.3 71.6

Table 10. Top-1 accuracy (%) during pretraining from 100 to 800 epochs. Comparison of MoCo-v2, SynCo, and SynCo7 (synthetic

negatives disabled after 400 epochs).

Method 1% 10% 100%
MoCo-v2 [17] 48.2 66.1 77.0
MoCHI [49] 50.4 65.7 78.0
SynCo (ours) 50.8 66.6 79.0

Table 11. Top-1 accuracy under different fine-tuning data frac-
tions. We compare MoCo-v2, MoCHI, and SynCo when fine-tuned
on 1%, 10%, and 100% of ImageNet.

Method Epochs MeanT Median1 Std |
Supervised 90 1.381 1.369 0.110
MoCo [42] 200 1.012 0.999 0.115
MoCo-v2 [17] 200 1.061 0.971 0.358
MoCo-v2 [17] 800 1.146 1.043 0.375
PCL-v1 [56] 200 0.930 0.869 0.312
PCL-v2 [56] 200 0.988 0.866 0.419
SynCo (ours) 200 1.104 1.001 0.383

SynCo (ours) 800 1.384 1.282 0.361

Table 12. Statistical summary of the ratio between inter-class
and intra-class distances. 1 indicates higher is better, | indicates
lower is better. Higher mean indicates better class separation, while
lower standard deviation suggests more consistent feature learning
across different classes.

ter class separability, which is crucial for downstream classi-
fication tasks. This superior performance can be attributed to
SynCo’s synthetic hard negative generation strategies, which
help create more discriminative feature representations.

The standard deviation of the ratio distribution provides
insight into the consistency of learned features across differ-
ent classes. Lower standard deviation suggests more uniform
feature learning across all classes. While the supervised base-
line achieves the lowest standard deviation (0.110), among
MoCo-based methods, MoCo shows comparable consistency
(0.115).

Notably, both SynCo variants (200 and 800 epochs) con-
sistently outperform their MoCo-v2 counterparts at equiva-
lent training epochs in terms of mean ratio (1.104 vs 1.061 at
200 epochs, and 1.384 vs 1.146 at 800 epochs), demonstrat-
ing the effectiveness of synthetic hard negatives in learning
more discriminative features. The improvement in class con-
centration metrics aligns with SynCo’s superior performance

SynCo (200ep)
SynCo (800ep)
MoCo (200ep)
MoCo-v2 (200ep)
MoCo-v2 (800ep)
PCL-v1 (200ep)
PCL-v2 (200ep)

Density
no

JOO000DO

0 1 2 3 4 5

Ratio of between-class to within-class distances
Figure 5. Distribution of the ratio between inter-class and intra-
class distances for different MoCo-based methods. Higher values
indicate better class separation. We show MoCo [42], MoCo-v2

[17] (200 and 800 epochs), PCL-v1 and PCL-v2 [56] (200 epochs),
and SynCo (200 and 800 epochs).

on downstream tasks, particularly in scenarios requiring fine-
grained discrimination between similar classes. By focusing
exclusively on methods built upon the MoCo framework,
this comparison ensures a fair evaluation of SynCo’s contri-
butions to contrastive learning.

10.6. Robustness and Out-of-Distribution Evalua-
tion

Datasets. We evaluate the robustness and out-of-
distribution (OOD) generalization capabilities of SynCo rep-
resentations. For robustness evaluation, we employ four
datasets: ImageNet-v2 [72], which comprises three sets of
10,000 images (matched frequency, threshold 0.7, and top
images); ImageNet-A [46], which contains naturally adver-
sarial examples; ImageNet-C [44], which consists of 15 syn-
thetically generated corruptions (e.g., blur, noise, weather);
ImageNet-Watermark [58], testing robustness to watermark
perturbations. For OOD generalization, we examine perfor-
mance on five datasets: ImageNet-Sketch [88], containing
50,000 black-and-white sketches; ImageNet-R [45], consist-
ing of 30,000 artistic renditions; ImageNet-O [46], designed
for anomaly detection (evaluated using FPR95).

Evaluation protocol. On all datasets, we evaluate the rep-
resentations of a standard ResNet-50 encoder under a linear



evaluation protocol, where we freeze the pretrained represen-
tations and train a linear classifier using the labeled ImageNet
training set. The test evaluation is performed zero-shot, i.e.,
no training is done on the above datasets.

Results and analysis. As shown in Table 13, SynCo
demonstrates strong robustness across various distribution
shifts, outperforming MoCo and SimCLR in most robustness
benchmarks. At 200 epochs, SynCo achieves better results
than MoCo and is competitive with MoCo-v2, particularly
on ImageNet-C (51.6% top-1 accuracy) and ImageNet-A
(3.2% top-1 accuracy). At 800 epochs, SynCo achieves
comparable performance to MoCo-v2 across robustness
and OOD benchmarks, while surpassing SimCLR on OOD
datasets such as ImageNet-Sketch (19.2% top-1 accuracy)
and ImageNet-R (28.7% top-1 accuracy). Table 14 further
highlights SynCo’s strong performance across all corruption
categories in ImageNet-C, including noise, blur, weather, and
digital corruptions. SynCo consistently outperforms MoCo
across these categories, demonstrating its ability to maintain
high accuracy under a wide range of corruptions. At 800
epochs, SynCo achieves similar performance to MoCo-v2.

10.7. Adversarial Robustness

Attack methods. We evaluate the adversarial robustness
of SynCo by testing against a comprehensive suite of ad-
versarial attacks. Following standard practices in adversar-
ial machine learning [65], we assess model performance
against both white-box and black-box attacks on the Ima-
geNet validation set. All attacks are implemented using the
torchattacks library [51]7, with evaluations conducted using
a ResNet-50 backbone.

Evaluation protocol. Our evaluation includes gradient-
based attacks: Fast Gradient Sign Method (FGSM) [34]
with ¢ = 8/255, and Projected Gradient Descent (PGD)
[65] with e = 8/255, a = 2/255, and 10 steps. We also
evaluate against optimization-based attacks: Carlini & Wag-
ner (C&W) [9] with confidence x = 0, 50 optimization
steps, learning rate of 0.01, and initial constant ¢ = 1074,
Additionally, we test black-box attacks, including score-
based and decision-based methods: Square Attack [1] with
{s norm and 1,000 queries, and Auto Attack [20] using
{+ norm. Furthermore, we include advanced perturbation
methods: Translation-Invariant FGSM (TIFGSM) [24] with
e = 8/255, a = 2/255, and 10 steps, and One-Pixel Attack
[79] limited to single-pixel modifications with 10 steps.

Results and analysis. Results in Table 15 highlight
SynCo’s strong adversarial robustness across a diverse set

7Available  at: https : / / github .
adversarial-attacks-pytorch.

com / Harry24k /

of attacks. At 200 epochs, SynCo outperforms MoCo and
MoCo-v2 on clean accuracy (68.13%) and demonstrates
higher resilience against FGSM (24.70%) and PGD (0.33%)
attacks, reflecting its ability to withstand gradient-based per-
turbations better. Furthermore, SynCo achieves comparable
results to MoCo-v2 on optimization-based attacks like C&W
(17.87%) and Square Attack (14.73%), while surpassing
MoCo in all categories. At 800 epochs, SynCo continues
to exhibit competitive performance, achieving parity with
MoCo-v2 on clean accuracy (70.72% vs. 71.06%) and simi-
lar or slightly better robustness to most attacks.

10.8. Extending SynCo to Vision Transformers

In this section, we describe how we extend SynCo to vision
transformers [25]. While SynCo was originally tested for
convolutional architectures (specifically ResNet-50), its core
principle of enhancing contrastive learning through synthetic
hard negatives is architecture-agnostic. To adapt SynCo
for vision transformers, we integrate our synthetic negative
generation approach into the MoBY framework [96]. We
chose MoBY over MoCo-v3 [18] due to computational con-
straints, as MoCo-v3 requires prohibitively large batch sizes
(4096) which were not feasible with our available resources.
We follow the established MoBY protocol, which is par-
ticularly designed for self-supervised learning with vision
transformers. Specifically, both the encoder f,; and f; con-
sist of a backbone (DeiT-Small [84] or Swin-Tiny [62]) and
a projection head [14]. The encoder f, has an additional
prediction head following [35]. The encoder f, is updated
by the moving average of f,. Similar to the original MoBY
implementation, we maintain a dual-encoder architecture,
asymmetric network updates through momentum [35], and a
queue-based contrastive approach [42]. The primary differ-
ence in our implementation is the incorporation of synthetic
hard negatives generated in feature space, which creates
more challenging examples for the model during training.

Implementation details. For our full ImageNet experi-
ments, we selected the configuration with N = 256 hardest
negatives and N, = 128, for ¢ = 1,...,6, which offered
the best balance of performance and stability. We maintain
most of the training hyperparameters from MoBY, includ-
ing AdamW [64] optimizer with base learning rate of 0.03,
weight decay of 10~4, batch size of 512, temperature param-
eter 7 = 0.2, queue size K = 4096, and starting momentum
Mgare = 0.99 with cosine schedule. For longer pretraining
regimes (like our 300-epoch training on ImageNet), we im-
plement a “cooldown” period for the last 100 epochs where
no synthetic negatives are generated. This helps stabilize
learning as the model approaches convergence, preventing
the learning task from becoming too difficult in later stages.
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Robustness

Out-Of-Distribution

Method Epochs

IN MF T-0.7 IN-C IN-A IN-W IN-S IN-R 1IN-O
Supervised 90 76.1 63.1 723 77.6 398 0.0 487 241 362 814
SimCLR [14] 1000 69.3 532 61.7 680 31.1 - - 3.9 18.3 -
MoCo [42] 200 609 459 538 604 338 2.5 385 102 182 859
MoCo-v2 [17] 200 67.8 548 63.0 69.0 514 2.8 442 175 278 819
MoCo-v2 [17] 800 71.1 585 66.6 73.0 558 4.1 350 192 297 79.0
SynCo (ours) 200 68.1 549 63.7 69.8 51.6 32 428 165 267 825
SynCo (ours) 800 70.7 58.1 664 725 559 42 416 192 287 795

Table 13. Top-1 accuracy (in %) across different ImageNet variants. We use ResNet-50 as the backbone, except ImageNet-O (IN-O)
where we evaluate using FPR95. Abbreviations legend: IN: ImageNet; MF/TO7/TIL: ImageNet-v2 variants; IN-C: ImageNet-C; IN-A:
ImageNet-A; IN-S: ImageNet-Sketch; IN-R: ImageNet-R; IN-W: ImageNet-Watermark. Results for SimCLR are from [83]. We reproduce
MoCo and MoCo-v2 linear probing since no checkpoints are available (thus results may differ from original implementation).

Method Epochs Noise Blur Weather Digital

Gauss Shot Imp Defoc Glass Mot Zoom Frost Snow Fog Bright Cont Elas Pix JPEG
Supervised 90 329 305 286 353 253 362 362 349 30.1 429 650 357 429 456 530
SimCLR [14] 1000 29.1 263 173 221 147 200 186 272 333 462 597 539 310 242 439
MoCo [42] 200 299 265 102 261 243 33.0 207 324 252 281 522 470 433 358 403
MoCo-v2 [17] 200 51.8 502 363 482 441 504 361 502 404 448 637 581 581 581 529
MoCo-v2 [17] 800 56.2 548 399 526 487 581 40.1 539 456 514 671 621 619 61.7 56.7
SynCo (ours) 200 523 509 348 488 447 513 365 497 399 440 637 583 583 583 528
SynCo (ours) 800 57,5 563 409 531 497 573 41.6 536 449 498 66.8 620 619 61.0 558

Table 14. Top-1 accuracy (%) for ImageNet-C corruption results. We use ResNet-50 as the backbone. ImageNet-C: noise (gaussian, shot,
impulse), blur (defocus, glass, motion, zoom), weather (frost, snow, fog, brightness), digital (contrast, elastic, pixelate, jpeg). We reproduce

MoCo and MoCo-v2 linear probing since no checkpoints are available.

Method Epochs Clean FGSM PGD C&W Square Auto TIFGSM OnePixel
Supervised 90 76.15 2347 028 16.19 1152 0.21 4.37 73.79
MoCo [42] 200 60.86 1575 0.08  9.40 9.98 0.05 7.33 57.40
MoCo-v2 [17] 200 67.77 23775 032 17.08 13.94  0.23 5.36 65.16
MoCo-v2 [17] 800 71.06  30.79 0.53 2299 18.89  0.34 8.29 68.69
SynCo (ours) 200 68.13 2470 033 17.87 1473  0.24 6.24 65.71
SynCo (ours) 800 70.72  31.67 048 22.90 18.66  0.34 8.00 68.45

Table 15. Top-1 accuracy (in %) under various adversarial attacks on ImageNet validation set. We use ResNet-50 as the backbone. We
reproduce MoCo and MoCo-v2 linear probing since no checkpoints are available.

Results and analysis. As shown in Table 16, our method
achieves consistent improvements over the MoBY baseline
across both DeiT-S [84] and Swin-T [62] architectures, while
also outperforming other self-supervised approaches like
DINO [11] and MoCo-v3 [18]. This demonstrates the ef-
fectiveness of synthetic hard negatives in enhancing rep-
resentation learning for vision transformers, proving that
the approach transfers successfully from convolutional to
transformer-based architectures. While there remains a gap
compared to supervised learning, our results show that the
synthetic negative technique is a simple yet effective en-

hancement to existing self-supervised learning frameworks
for vision transformers.

10.9. Class Average t-SNE Visualization

We examine the distribution of ImageNet concepts in
SynCo’s feature space. For each ImageNet class, we com-
pute the average feature vector from its validation images.
We apply t-SNE [86] with a perplexity of 30 and learning rate
of 200 for 1000 iterations. Figure 18 and Figure 19 reveal
that SynCo learns meaningful semantic structures: similar
animal species naturally cluster together, e.g., spider, barn



Method Arch. Epochs Top-1
Supervised DeiT-S 300 79.8
Supervised Swin-T 300 81.3
DINO [11] DeiT-S 300 72.5
MoCo-v3 [18] DeiT-S 300 72.5
MoBY [96] DeiT-S 300 72.8
MoBY [96] Swin-T 300 75.0
SynCo (ours)  DeiT-S 300 73.0
SynCo (ours) Swin-T 300 75.2

Table 16. Linear evaluation on ImageNet ILSVRC-2012 using
vision transformers. Top-1 accuracy (in %) for methods using
vision transformers as encoders, pretrained for 300 epochs. Results
for SynCo are based on 1 run.

spider, garden spider, tarantula, wolf spider, and black widow
cluster together (bottom right), while digital clock, digital
watch, and dial telephone form another coherent group (right
mid). The visualization at 800 epochs (Figure 19) shows
coherent clusters as well, where e.g., Yorkshire terrier, silky
terrier, and Australian terrier cluster together (right mid).
We also perform the same analysis for MoCo [42] with 200
epochs of pretraining (Figure 20) and MoCo-v2 [17] with
both 200 epochs (Figure 21) and 800 epochs (Figure 22) of
pretraining for comparison. Additionally, we include the
results from a supervised model trained on ImageNet for
comparison (Figure 23).

10.10. GradCAM Visualization

To gain deeper insights into the regions SynCo focuses on
during feature extraction, we utilize GradCAM [78] to vi-
sualize the model’s attention. Attention maps are generated
from the final residual block of the ResNet-50 backbone.
Figure 6 presents GradCAM visualizations for various Ima-
geNet validation images, comparing SynCo pretrained for
200 epochs and 800 epochs alongside supervised models.
The heatmaps reveal that SynCo effectively attends to dis-
criminative object parts and regions, demonstrating its ability
to learn meaningful semantic features without supervision.

10.11. UMAP Visualization

To better understand the feature representations learned by
SynCo, we perform Uniform Manifold Approximation and
Projection (UMAP) [66] on feature embeddings extracted
from the validation set. UMAP reduces high-dimensional
data to two dimensions, allowing for a qualitative evaluation
of class separability. We considered three configurations
based on the number of classes: the first 40, the first 100,
and all 1000 classes from ImageNet. Figures 12 and 13
illustrate the results for models pretrained for 200 and 800
epochs, respectively. We also present UMAP visualizations
for MoCo with 200 epochs of pretraining (Figure 14) and

MoCo-v2 with both 200 epochs (Figure 15) and 800 epochs
(Figure 16) of pretraining for comparison. For comparison,
we also include UMAP visualizations of features from a
supervised model trained on ImageNet (Figure 17).

10.12. Nearest Neighbor Retrieval

To analyze the semantic consistency of SynCo’s learned rep-
resentations, we perform nearest neighbor retrieval using the
following process. We extract 2048-dimensional feature vec-
tors from both ImageNet training and validation sets using
the pretrained ResNet-50 backbone with the classification
layer removed, applying average pooling to the final con-
volutional outputs. Using these embeddings, we randomly
select query images from the validation set and find their
nearest neighbors from the training set memory bank using
cosine distance. Since the nearest neighbor is typically the
same image in the memory bank, we analyze neighbors #2
through #6. Results shown in Figure 7 demonstrate how
SynCo effectively clusters semantically similar images after
200 and 800 epochs of pretraining. We observe that the
retrieved neighbors share similar semantic concepts, textures
and object poses with the query image.

11. Ablation Studies

In this section, we perform ablation studies of SynCo on
ImageNet-100 and CIFAR-100. For ImageNet we use a
ResNet-50, while for CIFAR-100 we use a modified ResNet-
18. We compare our method with the baseline of MoCo-v2,
showing how SynCo improves performance through syn-
thetic hard negatives. Our experiments analyze the impact
of different negative types, hyperparameter sensitivity, and
queue size variations. We did not search for the optimal
combination of negative types, instead opting to ablate each
type individually and all together, as even without consid-
ering hyperparameters, testing all possible combinations of
the 6 negative types would require evaluating 63 different
configurations (26 — 1), which would be computationally
prohibitive.

11.1. Ablation Study on ImageNet-100

First, we perform ablations studies on ImageNet-100 for
100-way classification. Specifically, we ablate SynCo’s hy-
perparameters o, §, 1, types (1 to 6), and the effect of queue
size K to pretraining. The results of our ablations are pre-
sented in Tables 17 to 19.

Ablation on hyperparameters. We conducted ablations
on the parameters o, §, and 1 of SynCo’s type 4, type 5,
and type 6 negatives, respectively. The results, presented in
Table 17, show that varying these parameters does not lead
to significant differences in performance. This suggests that
SynCo is robust across a wide range of values for o, 9, 7.



Image Supervised SynCo (200 ep.) SynCo (800 ep.) Image Supervised SynCo (200 ep.) SynCo (800 ep.)

Figure 6. GradCAM visualizations of ImageNet validation set. We compare different models: supervised training and SynCo pretrained
for 200 and 800 epochs.
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SynCo (200 ep.) SynCo (800 ep.)

NN 2 NN 3 NN 2 NN 3

Figure 7. Visualization of nearest neighbors in the embedding space. SynCo is pretrained at 200 epochs (left) and 800 epochs (right).
Each row corresponds to a query image and its top-5 nearest neighbors in the respective embedding spaces.

11



Value Top-1 Top-5
0.01 48.20 74.26

o 005 4836 73.84
0.10 47.62 73.50

0.01 48.12 7446

0 005 4888 7472
0.10  48.04 73.72

0.01 48.06 74.00

n 0.05 47.16 74.14
0.10 47.76  74.06

Table 17. Ablation study on ImageNet-100 for SynCo’s hyper-
parameters o, J, and 7). Top-1 and top-5 accuracies (in %) under
linear evaluation with 100 epochs of pretraining using ResNet-50.
We highlight the default hyperparameter.

st §2 683 684 85 S§6 Top-1 Top-5
X X X X X X 47.7 73.9
v X X X X X 48.2 73.9
X v X X X X 48.2 74.1
X X v X X X 48.2 73.8
X X X v X X 48.2 74.2
X X X X v X 48.1 74.4
X X X X X v 48.0 74.0
v v X X X X 48.1 73.9
v X v X X X 46.8 72.9
X v v X X X 48.2 74.1
X v X X v X 46.3 74.1
v v v X X X 48.3 74.2
X X X v v v 48.3 74.1
v v v Vv v oV 48.4 74.5

Table 18. Ablation study on ImageNet-100 for the synthetic neg-
ative types. We convert each configuration into a binary selection
over six synthetic negative strategies (S'—S%). We highlight the
default hyperparameter.

Ablation on types. We evaluate the impact of each syn-
thetic hard negative type on pretraining by selecting the
top N = 1024 hardest negatives and generating N; = 256
synthetic negatives for each type ¢ = 1,2,...,6. We sys-
tematically evaluate individual types, pairwise combinations,
subset groupings, and the complete combination to under-
stand how different synthetic negative generation strategies
contribute to representation learning. As we can see from
Table 18, all individual synthetic negative types demonstrate
improvements over the MoCo-v2 baseline (47.7% top-1 ac-
curacy). The geometric transformation types (Types 1-3)
achieve the strongest individual improvements, with interpo-
lated, extrapolated, and mixup negatives all reaching 48.2%
top-1 accuracy. Type 4 (noise-injected) matches this perfor-
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Queue size K
4k 8k 16k 32k 65k 131k

MoCo-v2 [17] 50.10 50.50 49.32 48.02 47.74 47.60
SynCo (ours) 48.30 48.50 49.40 48.08 48.42 48.50

Method

Table 19. Ablation study on ImageNet-100 for the queue size K.
Top-1 accuracies (in %) under linear evaluation with 100 epochs of
pretraining using ResNet-50, comparing MoCo-v2 and SynCo. We
highlight the default hyperparameter.

mance at 48.2%, while the gradient-based approaches show
more modest individual gains—Type 5 (perturbed) at 48.1%
and Type 6 (adversarial) at 48.0%. From the pairwise combi-
nations in Table 18, we observe that some combinations like
Types 1,2 (48.1%) and Types 2,3 (48.2%) maintain strong
performance, while others show degradation—notably Types
1,3 (46.8%) and Types 2,5 (46.3%). This suggests that cer-
tain synthetic negative types may interfere with each other
when combined inappropriately, potentially due to conflict-
ing optimization signals or redundant hard example genera-
tion. As shown in Table 18, when grouped by methodology,
geometric transformations (Types 1,2,3) achieve 48.3% top-1
accuracy, while gradient-based methods (Types 4,5,6) reach
48.3% as well, indicating that both geometric and gradient-
based approaches provide substantial improvements when
properly combined within their respective categories. Our
complete SynCo approach, which combines all six synthetic
negative types, achieves the best performance at 48.4% top-1
accuracy and 74.5% top-5 accuracy. This represents a +0.7%
improvement in top-1 accuracy over MoCo-v2, demonstrat-
ing that despite some negative pairwise interactions, the dif-
ferent synthetic negative types provide complementary learn-
ing signals that collectively enhance representation learning
beyond what individual approaches can achieve.

Ablation on queue size. We investigate the effect of queue
size Q on performance. We train SynCo and MoCo-v2 with
reduced queue sizes. Our results, presented in Table 19, re-
veal that SynCo performs comparably to MoCo-v2 across
various queue sizes. With smaller queues, SynCo underper-
forms compared to MoCo-v2. This can be attributed to the
fact that the total generated synthetic negatives are too hard
for the task and harm performance, a finding that is also
observed in [49]. However, as the queue increases, SynCo
performs on par with MoCo-v2. At the largest queue size
tested, SynCo outperforms MoCo-v2.

11.2. Ablation Study on CIFAR-100

Secondly, we perform additional ablation studies on CIFAR-
100 [55] for 32 x 32 images for 100-way classification, cho-
sen for its computational efficiency while maintaining suf-
ficient complexity for meaningful ablations. We ablate the



same paramters as in Section 11.1, with the addition of
N;, N, and batch size. We use the same settings as previ-
ously discussed with the following differences. We adopt
a ResNet-18 (512 output units) [40] architecture without
the final classification layer, replacing the original 7 x 7
convolutional layer (conv1) with a 3 X 3 convolution that
has a stride of 1 and removing the initial max pooling layer
(maxpool). The batch size for CIFAR-100 is set to 256, us-
ing a single NVIDIA RTX 6000 GPU, and the total training
duration is set to 1,000 epochs. Unless stated otherwise, we
use K = 16k. We report both top-1 and top-5 accuracies as
percentages on the test set. When training a linear classifier
on top of frozen features, we use a learning rate of 3.0.

Ablation on parameters. We evaluate the impact of the
parameters o, 9, and 17 on SynCo’s performance, specifically
focusing on type 4, type 5, and type 6 negatives. To deter-
mine the optimal settings, we empirically test three sets of
values for each parameter: 0.1, 0.05,0.01. The results, illus-
trated in Figure 8, indicate that training SynCo with different
values of these parameters yields similar performance across
all configurations.

Ablation on types. We evaluate SynCo by first training
without hard negatives (equivalent to MoCo-v2) and then
by incorporating each type of hard negative individually, as
well as in combination. Additionally, we test different con-
figurations of the number of hard negatives (N7 through Ng)
to find the optimal settings. The results in Figure 9 show that
any incorporation of hard negatives accelerates convergence
and improves top-1 accuracy, regardless of type. Increas-
ing the total number of hard negatives beyond N = 1024
(e.g., to N = 2048) does not further enhance performance,
consistent with findings in MoCHI.

Ablation on queue size. We evaluate the performance
of SynCo across various queue sizes. The results, shown
in Figure 10, compare the top-1 accuracy of SynCo and
MoCo-v2 across these different queue sizes. SynCo initially
performs on par with MoCo-v2, with a minimal performance
gap, suggesting that excessively challenging negatives may
initially hinder learning efficacy. As the queue size increases,
both SynCo and MoCo-v2 show comparable performance,
converging further as the queue size maxes out.

Ablation on batch size. We evaluate the effect of varying
batch sizes on the performance of SynCo. We tested batch
sizes of 64,128, 256,512, 1024, and 4096. The results are
shown in Figure 11. SynCo consistently outperforms MoCo-
v2 across all batch sizes, even at the smallest batch size of
64. However, larger batch sizes generally lead to degraded
performance for both methods, likely due to the dilution of
gradient signals when averaging over larger batches.
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12. Extended Related Work

This section extends our related work discussion by examin-
ing two complementary approaches in self-supervised learn-
ing, i.e., synthetic feature generation, which enhances model
performance with limited labeled data, and generative self-
supervised methods, particularly Masked Image Modeling
(MIM), which learn by reconstructing or predicting parts of
input data.

12.1. Synthetic Features

Synthetic feature generation is a widely used method to
enhance deep learning models, especially with limited la-
beled data. Adding synthetic features to the representa-
tion space improves model generalization and performance.
Some methods generate features for unseen classes using
generative models [39, 77, 95], while others integrate these
into self-supervised and contrastive learning frameworks
[57, 104]. This approach has shown success in zero-shot
learning [37]. In contrast, our approach directly generates
synthetic hard negatives in contrastive learning, without re-
quiring additional generative models.

12.2. Generative Self-supervised Learning

While the previously discussed methods are discriminative
approaches that learn by comparing and distinguishing be-
tween different views or instances, another major branch of
self-supervised learning takes a generative approach. Gener-
ative methods learn by reconstructing or predicting parts of
the input data, with MIM emerging as a particularly success-
ful strategy. iGPT [13] demonstrated early success by treat-
ing images as sequences for autoregressive prediction, fol-
lowed by BEiT [6] and BEiT-v2 [71] which adapted BERT-
style [23] masked prediction to vision. MAE [43] showed
that aggressive masking of image patches (up to 75%) creates
an effective self-supervised task, while SimMIM [97] simpli-
fied the approach with a lightweight prediction head. Various
improvements followed: MaskFeat [93] predicted HOG fea-
tures instead of pixels, Context Autoencoder [19] leveraged
contextual information, and MSN [3] combined masking
with siamese networks. Recent work has focused on effi-
ciency and effectiveness through approaches like SiamMAE
[36], MixMAE [60], PixMIM [61], and TinyMIM [74]. The
latest developments include CropMAE [29] with efficient
siamese cropped autoencoders and ColorMAE [47] explor-
ing data-independent masking strategies. These generative
approaches differ fundamentally from discriminative meth-
ods by learning to predict or reconstruct missing information
rather than comparing different views or instances, offering a
complementary approach to self-supervised visual learning.
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Figure 9. Ablation study on CIFAR-100 for synthetic negative types and quantities. Top-1 accuracy evaluated every 100 epochs over
1000 epochs of training. (a) Performance of SynCo with one type of hard negative at a time. (b) Performance of SynCo with varying
numbers of hard negatives N; through Ng. Numbers in parentheses represent the maximum N chosen from the queue 0. (c) Comparison of
SynCo without hard negatives (equivalent to MoCo-v2) and with all hard negatives combined.

13. Discussion

In this section, we examine several critical aspects of our
work: the rationale behind comparing with MoCo-based
approaches rather than other self-supervised methods; the
underlying mechanisms of each synthetic hard negative type
and their contribution to model generalization; SynCo’s role
in model regularization and optimization strategies; detailed
comparisons with closely related work (MoCHI and AdCo);
the broader implications for other domains like text and au-
dio; connections to classical self-supervised learning founda-
tions; limitations in our hyperparameter analysis due to com-
putational constraints; potential extensions to stronger frame-
works like Vision Transformers and larger architectures; and
possible adaptations to SimCLR’s in-batch negative sam-
pling approach. Through this comprehensive discussion, we
aim to provide deeper insights into SynCo’s effectiveness,
limitations, and future research directions while contextu-
alizing our contributions within the broader landscape of
self-supervised learning.
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On the fairness of comparisons. Methods such as BYOL
[35], Barlow Twins [100], SWAV [10], DINO [11], SimCLR-
v2 [15], AdCo [48], and VICRegL [7] incorporate addi-
tional tricks, including larger projection heads (e.g., DINO,
SimCLR-v2), larger projection dimensions (e.g., DINO
65k, Barlow Twins 8k), multi-crop augmentation strategies
(SwAYV, AdCo), and extended training schedules (BYOL,
DINO, etc.), which significantly improve their performance.
However, these improvements stem from architectural and
training modifications rather than solely from their core
learning mechanisms. In contrast, our approach focuses
on demonstrating the effectiveness of synthetic negative gen-
eration within a simpler framework, without relying on such
tricks. Therefore, a fair comparison should be made against
MoCo-based approaches (MoCo-v2 [17], MoCHI [49], PCL
[56], DCL [98]), which share similar architectural choices
and training procedures, ensuring an equitable evaluation of
our contributions. Additionally, the MoCo-v2 framework is
practical for most laboratories for implementation, requiring
only 4 GPUs compared to the 8/16+ GPUs that most other
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Figure 10. Ablation study on CIFAR-100 for queue size. Top-1 accuracy on CIFAR-100, evaluated every 100 epochs over 1000 epochs of
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Figure 11. Ablation study on CIFAR-100 for batch size. Top-1 accuracy on CIFAR-100, evaluated every 100 epochs over 1000 epochs of
training, comparing SynCo with MoCo-v2. (a) With batch size of 64. (b) With batch size of 128. (c) With batch size of 256. (d) With batch
size of 512. (e) With batch size of 1024. (f) With batch size of 2048.
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methods need, making our contributions more accessible to
the broader research community.

Relationship with MoCHI. MoCHI [49] represents the
most directly related prior work to our approach, introducing
feature-level mixing for hard negative samples in contrastive
learning. However, MoCHI’s scope is limited to only two
synthetic negative strategies: interpolation between query
and hard negatives (corresponding to our Type 1), and linear
combination of pairs of hard negatives (corresponding to
our Type 3). While these strategies provide foundational
improvements, they primarily explore geometric transfor-
mations within the existing convex hull of hard negatives.
SynCo significantly extends this foundation by introducing
four additional strategies that explore previously unexplored
regions of the representation space. Our extrapolation strat-
egy (Type 2) pushes beyond the decision boundary, creating
negatives that are more challenging than any existing sam-
ples. Our gradient-based strategies (Types 5 and 6) lever-
age optimization landscape information to create principled
perturbations, while our noise injection strategy (Type 4)
introduces controlled stochasticity to prevent overfitting to
specific negative patterns. This comprehensive approach
ensures that SynCo explores diverse aspects of the repre-
sentation space, leading to more robust and generalizable
features compared to MoCHI’s limited geometric transfor-
mations, as evidenced by our ablations showing that novel
strategies (Types 2, 4-6) alone achieve 48.2/48.3% accu-
racy compared to MoCHI-equivalent strategies reproduction
(Types 1, 3) at 46.8%.

Relationship with AdCo. AdCo [48] takes a fundamen-
tally different approach to hard negative generation by main-
taining a set of trainable negative adversaries that are updated
through adversarial optimization:

(t+1) (t) OLaav
v =V, +«
k k 6V](:)

where v,(:) represents the k-th learnable negative adversary

at training step ¢, « is the learning rate for adversarial up-
dates, and L.4, is the adversarial contrastive loss that is
maximized to create more challenging negatives. While
both AdCo and SynCo aim to create more challenging neg-
atives, their methodologies differ significantly in computa-
tional requirements, implementation complexity, and inte-
gration with existing frameworks. AdCo requires a sepa-
rate adversarial training loop, maintains persistent negative
representations throughout training, and relies heavily on
multi-crop augmentation that increases computational over-
head by approximately 3.7x. Additionally, AdCo’s train-
able negatives require careful initialization and learning
rate scheduling, adding complexity to the training process.
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In contrast, SynCo generates synthetic negatives on-the-fly
without requiring additional training loops, persistent stor-
age, or computationally expensive augmentation strategies.
Our approach operates within the standard MoCo framework
while providing diverse synthetic negatives through different
geometric and gradient-based transformations.

Relationship to data augmentation strategies. While
SynCo operates in representation space, it shares concep-
tual similarities with data augmentation methods like Mixup
[102], CutMix [99], and AugMax [89] that operate in pixel
space. The key distinction is that SynCo’s transformations
occur after the encoder, enabling more semantically mean-
ingful negative generation that directly targets hard regions
in the learned embedding space. The embedding-space ap-
proach also provides computational advantages, as trans-
formations on low-dimensional vectors (e.g., 128-d) are
significantly cheaper than pixel-space operations on high-
resolution images.

Intuition of SynCo. Each SynCo strategy improves model
generalization through challenging contrasts. Type 1 interpo-
lates between query and hard negatives, increasing sample
diversity throughout training. Type 2 extrapolates beyond the
query, pushing representation space boundaries and improv-
ing robustness to difficult contrasts. Type 3 combines pairs
of hard negatives, encouraging more generalized and robust
feature learning. Type 4 injects Gaussian noise, promoting
invariance to minor feature fluctuations and enhancing gen-
eralization. Type 5 modifies embeddings based on similarity
gradients, refining discriminatory power by directing the
model towards harder negatives. Type 6 applies adversar-
ial perturbations, creating the most challenging contrasts
to distinguish deceptively similar samples. To illustrate the
distinction between gradient-based strategies, consider a con-
crete example in embedding space: given a horse (anchor)
and zebra (hard negative), Type 6 applies fixed-magnitude
perturbations (7-sign(V)) to push the zebra slightly closer to
the horse, while Type 5 applies variable-magnitude perturba-
tions (- V) that can range from subtle to significant based on
the gradient magnitude, enabling more diverse exploration
of the challenging region between these semantically similar
animals. Moreover, Type 5 provides significant advantages
over interpolation methods by supporting arbitrary similarity
functions (e.g., cosine, Jaccard) and generating negatives
of varying hardness. The complementary nature of these
strategies ensures comprehensive coverage of challenging
regions in the representation space, preventing overfitting to
specific negative patterns while maintaining appropriate task
difficulty.

Theoretical connections to contrastive learning theory.
Recent theoretical work [2, 76] provides foundations for



understanding why SynCo works. By generating synthetic
hard negatives, we effectively increase the “hardness” of the
contrastive task, which theory suggests should improve the
quality of learned representations. Our approach aligns with
spectral contrastive loss analysis [38], where harder nega-
tives help prevent dimensional collapse and encourage more
uniform feature distributions (validated by our uniformity
metrics in Figure 3). The gradient-based strategies (Types
5-6) connect to recent work on contrastive learning geom-
etry [90], as they explicitly leverage similarity gradients to
explore adversarial regions near decision boundaries. Future
theoretical work could formalize the conditions under which
synthetic hard negatives provably improve representation
quality.

When does SynCo provide the most benefit? Our experi-
ments reveal that SynCo provides the greatest improvements
in scenarios where the model can benefit from increased
proxy task difficulty. Specifically, SynCo excels in: (i) early
to mid-training phases (epochs 10-400) where the model is
actively learning discriminative features, (ii) tasks requir-
ing strong transferability (e.g., detection on COCO shows
+1.0% AP vs linear evaluation’s +0.4%), and (iii) low-data
regimes (semi-supervised learning with 1% labels shows
+2.6% improvement). Conversely, in very late training stages
(>400 epochs on ImageNet), excessive proxy task difficulty
may hinder convergence, suggesting that adaptive strategies
(e.g., stopping generating synthetic hard negatives) are cru-
cial for optimal performance.

Hard negatives for model regularization. SynCo ad-
dresses existing limitations by generating hard negatives
on-the-fly, reducing computational overhead while maintain-
ing diverse contrasts. It regularizes the network through
synthetic hard negatives, aligning with vicinal risk minimiza-
tion [12]. This encourages learning robust features over
memorization, addressing poor generalization common in
empirical risk minimization [87, 102]. The diverse synthetic
negatives create a comprehensive learning environment, im-
proving generalization across datasets and tasks. This ap-
proach reduces overfitting and enhances robustness to data
variations, leading to more robust representations [102].

Considerations for parameter tuning. Contrary to con-
cerns about high-dimensional tuning spaces, while SynCo
does incorporate multiple hyperparameters across its six
synthetic negative generation strategies, the framework is
designed to require minimal tuning. The key insight is that
reasonable performance can be achieved by setting hyper-
parameters within logical bounds rather than through ex-
haustive search. For the perturbation parameters o, d, and 7,
our experiments demonstrate minimal performance variation
when these parameters range from 0.01 to 0.1, with default
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values providing excellent performance (see Section 11.1).
Additionally, the hyperparameters cunax, Smax> and Ymax are
empirically chosen based on the intuition of each method and
remain fixed throughout training, eliminating the need for
dynamic tuning. For the core architectural hyperparameters,
we provide practical guidelines based on extensive ablations.
The number of hardest negatives N = 1024 follows the
principle of maintaining a challenging but not overly restric-
tive negative pool—smaller values (e.g., 256) would limit
diversity while larger values show diminishing returns. The
fixed ratios (256 vs 64) for different strategy types are based
on empirical observation that geometric transformations ben-
efit from more samples while perturbation-based methods
achieve saturation with fewer samples (see Section 11.2).

Implications in broader contexts. Introducing synthetic
hard negatives in contrastive learning not only improves
performance in image classification and detection but also
extends to other modalities such as text, audio, and multi-
modal tasks. In NLP, generating challenging negatives could
benefit sentence similarity, text classification, and transla-
tion, while in audio, it may aid speaker recognition and event
detection. Their flexibility also creates opportunities in do-
main adaptation and transfer learning: domain-specific hard
negatives can help models generalize better across shifts.
Overall, this adaptability suggests synthetic hard negatives
may play a key role in building more robust, generalizable
machine learning systems.

Bridging classical and modern self-supervised learning.
While many foundational works in self-supervised learning
date back years [32], their core principles and challenges
remain relevant. Our work shows that these frameworks can
be strengthened through synthetic hard negative generation,
linking classical techniques with modern needs for more
efficient and robust representation learning. The method’s
consistent performance gains across tasks indicate that self-
supervised learning—especially when enhanced with syn-
thetic samples in embedding space—continues to provide
useful paths for advancing Al. As the field moves toward
more generalizable, data-efficient approaches, methods that
work well with limited labeled data become increasingly
critical.

Limitations on hyperparameter analysis. While our ex-
periments demonstrate SynCo’s effectiveness across various
configurations, our comprehensive hyperparameter analysis
is primarily based on CIFAR-100 (see Section 11.2), with
findings extended to ImageNet. Due to computational con-
straints, we cannot exhaustively ablate these parameters on
larger datasets. Nevertheless, our results show that SynCo
is remarkably robust to variations in hyperparameters (o, J,
7, see Section 11.1) and the number of synthetic negatives



(V;, N, see Section 11.2). This versatility suggests that even
without dataset-specific optimization, SynCo can achieve
strong performance with default parameters.

Potential extensions. While our current implementation
is built on MoCo-v2 [17] for computational efficiency (re-
quiring only 4 GPUs), SynCo’s principles could be inte-
grated with more advanced frameworks. Using larger projec-
tion and prediction heads [11, 35], incorporating multi-crop
augmentation [10], or leveraging newer CNN architectures
such as ConvNeXt [63] could further improve performance.
However, these improvements typically require substantially
more computational resources (> 8 GPUs), making them
impractical for our current experimental setup. Future work
may explore these extensions as additional resources become
available.

Potential extension to SimCLR. While our method is
built upon MoCo-v2 [17]’s memory bank, the concept of
synthetic hard negatives could be adapted to SImCLR [14]’s
in-batch negative sampling approach. Instead of generating
synthetic negatives from memory bank features, one could
generate them from in-batch features. However, SimCLR
typically requires very large batch sizes (4096) and signif-
icant GPU resources (> 8 GPUs) to achieve competitive
performance, making such an implementation computation-
ally prohibitive for our current experimental validation. This
remains an interesting direction for future research.

14. Checkpoint Availability

The pre-trained model checkpoints for models trained on
the ImageNet ILSVRC-2012 dataset are available for down-
load: 200-epoch model (top-1 linear evaluation accuracy
68.1%) and 800-epoch model (top-1 linear evaluation accu-
racy 70.7%).

15. Broader Impact

The presented research should be categorized as research in
the field of unsupervised learning. This work may inspire
new algorithms, theoretical, and experimental investigation.
The algorithm presented here can be used for many differ-
ent vision applications and a particular use may have both
positive or negative impacts, which is known as the dual
use problem. Besides, as vision datasets could be biased,
the representation learned by SynCo could be susceptible to
replicate these biases.

16. Reproducibility Statement

We intend to make a public release of the code reposi-
tory and pre-trained models to aid the research commu-
nity in reproducing our experiments. Our implementation
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of SynCo is built upon the publicly available MoCo [42]
codebase. We also provide the pseudocode for generating
each type of synthetic negative in Section 8 to further as-
sist in understanding and replication. With minimal addi-
tional hyperparameters introduced for synthetic negative
generation, we have explicitly detailed these parameters
and their values in Section 9 of our paper. We closely
follow the experimental protocol of MoCo-v2 [17] to en-
sure fair comparison. To further support reproducibility, we
have made our pretrained model checkpoints publicly avail-
able (links provided in Section 14). The code is available
at https://github.com/giakoumoglou/synco.
‘We believe these resources, combined with the detailed de-
scriptions in our paper, will enable other researchers to repli-
cate our results and build upon our work.
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Algorithm 1 Pseudocode of SynCo in a PyTorch-like style.

f_g, f_k: encoder networks for query and key

queue: dictionary as a queue of K keys (CxK)

m: momentum coefficient

t: temperature parameter

n_hard: number of hard negatives to select

hyperparameters for synthetic negative generation:

nl, n2, n3, n4, n5, n6: number of synthetic hard negatives to generate
sigma: noise standard deviation, epsilon: perturbation scale

delta: step size for gradient-based, eta: step size for adversarial

S S H S SR R R e S

Hh

_k.params = f_g.params.copy() # initialize

for x in loader: # load a minibatch x with N samples
%x_g = aug(x) # a randomly augmented version
k = aug(x) # another randomly augmented version

b

q = f_g.forward(x_qg) # queries: NxC
k = f_k.forward(x_k) # keys: NxC
k = k.detach() # no gradient to keys

# compute logits
1l_pos = bmm(g.view(N,1,C), k.view(N,C,1)) # positive logits: Nxl
l_neg = mm(g.view(N,C), queue.view(C,K)) # negative logits: NxK

# find indices of the top-(n_hard) hard negatives
idxs_hard topk (1_neg, k=n_hard)

# generate all six types of synthetic hard negatives

sl = hard_negatives_interpolation(q, idxs_hard) # type 1: interpolated hard negatives:

1l _neg_1l = einsum("nc,nkc->nk", [q, sl]
1l _neg = cat([l_neg, 1l _neg_ 1], dim=1)

s2 = hard_negatives_extrapolation(qg, idxs_hard) # type 2: extrapolated hard negatives:

l_neg_2 = einsum("nc,nkc->nk", [qgq, s2])
l_neg = cat([l_neg, 1l_neg_2], dim=1)

s3 = hard_negatives_mixup(q, idxs_hard) # type 3: mixup hard negatives: Nxn3
1l _neg_3 = einsum("nc,nkc->nk", [q, s3]
1l _neg = cat([l_neg, 1l_neg_ 3], dim=1)

s4 = hard_negatives_noise_inject (g, idxs_hard) # type 4: noise-injected hard negatives:

1l_neg_4 = einsum("nc,nkc->nk", [q, s4])
l_neg = cat([l_neg, 1l_neg_4], dim=1)

s5 = hard_negatives_perturbed(q, idxs_hard) # type 5: gradient-based hard negatives:
1l _neg_5 = einsum("nc,nkc->nk", [qg, s5]
l_neg = cat([l_neg, 1l_neg_5], dim=1)

s6 = hard_negatives_adversarial (q, idxs_hard) # type 6: adversarial hard negatives:
l_neg_6 = einsum("nc,nkc->nk", [qg, s6]
l_neg = cat([l_neg, 1l_neg_6], dim=1)

# logits: Nx (1+K+nl+n2+n3+n4+n5+né6)
logits = cat([l_pos, l_neg], dim=1)

# contrastive loss, positives are the 0-th
labels = zeros(len(logits))
loss = CrossEntropyLoss (logits/t, labels)

# SGD update: query network
loss.backward()
update (f_g.params)

# momentum update: key network
f_k.params = mxf_k.params+ (1l-m)*f_g.params

# update dictionary
enqueue (queue, k) # enqueue the current minibatch
dequeue (queue) # dequeue the earliest minibatch

Nxnl

Nxn2

Nxn4

Nxn5

Nxn6

Algorithm 2 Interpolated synthetic negatives generation (Type 1) in a PyTorch-like style.

def hard_negatives_interpolation(q, idxs_hard, alpha=0.5):
idxs = randint (0, n_hard, size=(batch_size, nl))

alpha = rand(size=(batch_size, nl, 1)) x 0.5
hard_negatives = queue[gather (idxs_hard, dim=1, index=idxs)].clone () .detach/()
hard_negatives = alpha * g.clone().detach()[:, None] + (1 - alpha) * hard_negatives

return normalize (hard_negatives, dim=-1) .detach()
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Algorithm 3 Extrapolated synthetic negatives generation (Type 2) in a PyTorch-like style.

def hard_negatives_extrapolation(q, idxs_hard, beta=1.5):
idxs = randint (0, n_hard, size=(batch_size, n2))
beta = 1 + rand(size=(batch_size, n2, 1)) % 0.5
hard_negatives = queue[gather (idxs_hard, dim=1, index=idxs)].clone () .detach()
hard_negatives = g.clone () .detach()[:, None] + beta x (hard_negatives - g.clone().detach()[:, None])
return normalize (hard_negatives, dim=-1) .detach()

Algorithm 4 Mixup hard negatives generation (Type 3) in a PyTorch-like style.

def hard_negatives_mixup (g, idxs_hard, gamma=1.0) :

idxsl, idxs2 = randint (0, n_hard, size=(2, batch_size, n3)
gamma = rand(size=(batch_size, n3, 1)) * 1.0
hard_negativesl = queue[gather (idxs_hard, dim=1, index=idxsl)].clone () .detach()

hard_negatives2 = queue[gather (idxs_hard, dim=1, index=idxs2)].clone () .detach()
neg_hard = gamma * hard_negativesl + (1 - gamma) »* hard_negatives2
return normalize (neg_hard, dim=-1).detach()

Algorithm 5 Noise-injected synthetic negatives generation (Type 4) in a PyTorch-like style.

def hard_negatives_noise_inject(q, idxs_hard, sigma=0.01):
idxs = randint (0, n_hard, size=(batch_size, n4))
hard_negatives = queue[gather (idxs_hard, dim=1, index=idxs)].clone () .detach()
noise = randn_like (hard_negatives) * sigma
return normalize (hard_negatives + noise, dim=-1).detach()

Algorithm 6 Perturbed synthetic negatives generation (Type 5) in a PyTorch-like style.

def hard_negatives_perturbed(q, idxs_hard, delta=0.01, epsilon=le-5):
idxs = randint (0, n_hard, size=(batch_size, nb5))
hard_negatives = queue[idxs_hard[arange (batch_size) .unsqueeze (1), idxs]].clone () .detach()
hard_negatives_list = []
for i in range (hard_negatives.size(l)):
neighbor = hard_negatives[:, 1, :].detach().clone() .requires_grad_(True)
similarity = einsum(’nc,nc->n’, [g, neighbor])
grad = autograd.grad(similarity.sum(), neighbor, create_graph=False) [0]
perturbed_neighbor = neighbor + delta x grad
hard_negatives_list.append (perturbed_neighbor.detach())

hard_negatives_final = stack (hard_negatives_1list, dim=1)
return normalize (hard_negatives_final, dim=-1) .detach ()

Algorithm 7 Adversarial synthetic negatives generation (Type 6) in a PyTorch-like style.

def hard_negatives_adversarial (q, idxs_hard, eta=0.01):
batch_size = g.size (0)
idxs = randint (0, n_hard, size=(batch_size, n6))
hard_negatives = queue[gather (idxs_hard, dim=1, index=idxs) ]
hard_negatives_list = []
for i in range (hard_negatives.size(l)):

neighbor = hard_negatives[:, 1, :].requires_grad_(True)
similarity = einsum(’nc,nc->n’, [qg, neighbor])
gradient = autograd.grad(outputs=similarity.sum(),

inputs=neighbor,
retain_graph=True) [0]
adversarial_negative = neighbor + eta * gradient.sign()
hard_negatives_list.append(adversarial_negative.detach())
hard_negatives_final = stack(hard_negatives_list, dim=1)
return normalize (hard_negatives_final, dim=-1)
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(a) 40 classes (b) 100 classes (c) 1000 classes

Figure 12. UMAP visualizations of features extracted from SynCo pretrained for 200 epochs. The visualizations correspond to 40, 100,
and 1000 classes of ImageNet validation set.

(a) 40 classes (b) 100 classes (c) 1000 classes

Figure 13. UMAP visualizations of features extracted from SynCo pretrained for 800 epochs. The visualizations correspond to 40, 100,
and 1000 classes of ImageNet validation set.

(a) 40 classes (b) 100 classes (c) 1000 classes

Figure 14. UMAP visualizations of features extracted from MoCo [42] pretrained for 200 epochs. The visualizations correspond to 40,
100, and 1000 classes of ImageNet validation set.
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(a) 40 classes (b) 100 classes (c) 1000 classes

Figure 15. UMAP visualizations of features extracted from MoCo-v2 [17] pretrained for 200 epochs. The visualizations correspond to
40, 100, and 1000 classes of ImageNet validation set.
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(a) 40 classes (b) 100 classes (c) 1000 classes

Figure 16. UMAP visualizations of features extracted from MoCo-v2 [17] pretrained for 800 epochs. The visualizations correspond to
40, 100, and 1000 classes of ImageNet validation set.
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Figure 17. UMAP visualizations of features extracted from the supervised model [70]. The plots show feature distributions for 40, 100,
and 1000 classes from the ImageNet validation set.
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Figure 18. t-SNE visualization of ImageNet class embeddings in SynCo’s feature space after 200 epochs of pretraining. Each point
represents the average feature vector of validation set images for one class. The visualization reveals semantic clustering, with similar
concepts appearing close together.
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Figure 19. t-SNE visualization of ImageNet class embeddings in SynCo’s feature space after 800 epochs of pretraining. Each point
represents the average feature vector of validation set images for one class.
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Figure 20. t-SNE visualization of ImageNet class embeddings in MoCo’s [42] feature space after 200 epochs of pretraining. Each
point represents the average feature vector of validation set images for one class.
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Figure 21. t-SNE visualization of ImageNet class embeddings in MoCo-v2’s [17] feature space after 200 epochs of pretraining. Each
point represents the average feature vector of validation set images for one class.
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Figure 22. t-SNE visualization of ImageNet class embeddings in MoCo-v2’s [17] feature space after 800 epochs of pretraining. Each

point represents the average feature vector of validation set images for one class.
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Figure 23. t-SNE visualization of ImageNet class embeddings in the supervised feature space [70]. Each point corresponds to the mean
feature vector of validation images belonging to a single class.
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