
SynCo: Synthetic Hard Negatives in Contrastive Learning for Better Unsupervised
Visual Representations

Supplementary Material

7. Algorithm

Algorithm 1 provides the pseudo-code of SynCo.

Algorithm 1 Pseudocode of SynCo in a PyTorch-like style.

f_q, f_k: encoder networks for query and key
queue: dictionary as a queue of K keys (CxK)
m: momentum
t: temperature
hard_neg_functions: list of functions to generate
synthetic negatives (type 1 to 6)

f_k.params = f_q.params # initialize
for x in loader: # load a minibatch x with N samples

x_q = aug(x) # a randomly augmented version
x_k = aug(x) # another randomly augmented version

q = f_q.forward(x_q) # queries: NxC
k = f_k.forward(x_k) # keys: NxC
k = k.detach() # no gradient to keys

positive logits: Nx1
l_pos = bmm(q.view(N,1,C), k.view(N,C,1))

negative logits: NxK
l_neg = mm(q.view(N,C), queue.view(C,K))

find indices of the top-(N_hard) hard negatives
idxs_hard = topk(l_neg, k=N_hard)

generate hard negatives
for func in hard_neg_functions:

generate hard negatives of type i
s_neg = func(q, queue, idxs_hard)
compute logits for synthetic negatives
l_syn = bmm(q.view(N,C), s_neg.view(N,C))
append hard negatives logits
l_neg = cat([l_neg, l_syn], dim=1)

logits: Nx(1+K+N_hard)
logits = cat([l_pos, l_neg], dim=1)

contrastive loss
labels = zeros(N) # positives are the 0-th
loss = CrossEntropyLoss(logits/t, labels)

SGD update: query network
loss.backward()
update(f_q.params)

momentum update: key network
f_k.params = m*f_k.params+(1-m)*f_q.params

update dictionary
enqueue(queue, k) # enqueue the current minibatch
dequeue(queue) # dequeue the earliest minibatch

bmm: batch matrix multiplication; mm: matrix multiplication; cat: concatenation;
topk: returns the indices of the top-k values;

8. Implementation Details

We implement SynCo in PyTorch following the implementa-
tion of MoCo1. Specifically, we follow the same setting as
MoCo-v2.

1Available at: https://github.com/facebookresearch/
moco.

8.1. Pretraining

Datasets. We evaluate the proposed method on Ima-
geNet ILSVRC-20122 [6], which includes 1000 classes
and is commonly used in previous self-supervised methods
[3, 4, 26, 29]. The dataset consists of 1.28 million training
images and 50,000 validation images. We also conduct abla-
tion studies on ImageNet-100 [13], a subset of 100 classes
derived from ImageNet ILSVRC-2012, with 126,689 train-
ing images and 5,000 validation images. Both datasets are
well-balanced in class distribution, and the images contain
iconic views of objects, as is common in vision tasks [9, 26].

Augmentations. Each input image is transformed twice to
generate two different views. For SynCo, we use the same
augmentation as used in [5] and [12] for a fair comparison.
We transform each input image with two sampled augmen-
tations to produce two distorted versions of the input. The
augmentation pipeline consists of random cropping, resizing
to 224 × 224, randomly flipping the images horizontally,
applying color distortion, optionally converting to grayscale,
adding Gaussian blurring.

Architecture. Both the encoder fq and fk consist of a
backbone and a projection head. The encoder fk is updated
by the moving average of fq . As our base encoder, we adopt
ResNet-50 (2048 output units). The projection head is a
2-layer MLP, following [5]: the hidden layers of the MLP
are 2048-d and are with ReLU [18]; the output layer of the
MLP is 128-d, without ReLU.

Optimization. We follow the same setting as [5]. We
utilize the SGD optimizer [20] with a base learning rate of
0.03 (= 0.03×batch size/256), where we scale the learning
rate with the batch size as in [3], and a weight decay of
10−4. The training schedule begins with a warm-up period
during the first 10 epochs in which the learning rate linearly
increases from 0 to the base learning rate. Following this, the
learning rate gradually decreases to zero following a cosine
decay schedule without restarts. The batch size for ImageNet
is set to 256 distributed over 4 NVIDIA A40 GPUs. The
total training duration is set to 200/800 epochs for ImageNet.
For pretraining, SynCo takes approximately 43 hours (1.8
days) and 8 kWh of power for 100 epochs.

2Available at: https://www.image-net.org/.

1

https://github.com/facebookresearch/moco
https://github.com/facebookresearch/moco
https://www.image-net.org/

Hyperparameters. We empirically set SynCo’s hyperpa-
rameters to σ = 0.01, δ = 0.01, and η = 0.01. A thor-
ough analysis of these hyperparameters revealed no signifi-
cant difference in performance when these values are varied
within reasonable bounds (also see Section 9.3), indicating
that our method is robust to a range of practical settings.
For hard negative generation, we select the top N = 1024
hardest negatives and set N1 = N2 = N3 = 256 and
N4 = N5 = N6 = 64 to maintain a balanced total num-
ber of generated hard negatives. A detailed analysis of the
choice of Ni, i = 1, . . . , 6 is provided in Section 9.3. We
tested various similarity functions, including cosine similar-
ity, Euclidean, and Mahalanobis distances, for generating
gradient-based synthetic hard negatives. Our results revealed
no significant differences in model performance across these
similarity measures. Therefore, we opted to use the dot prod-
uct similarity function, which simplifies computation and
aligns with the InfoNCE loss used in SynCo’s contrastive
learning framework.

8.2. Linear Evaluation
We follow the linear evaluation protocol of [11] and as in
[3, 8, 14, 15, 22], which consists in training a linear classifier
on top of the frozen representation, i.e., without updating the
network parameters nor the batch statistics. At training time,
we apply spatial augmentations, i.e., random crops with
resize to 224 × 224 pixels, and random flips. At test time,
images are resized to 256 pixels along the shorter side using
bicubic resampling, after which a 224× 224 center crop is
applied. In both cases, we normalize the color channels by
subtracting the average color and dividing by the standard
deviation, after applying the augmentations. We optimize
the cross-entropy loss using SGD with Nesterov momentum
over 100 epochs, using a batch size of 256 and a momentum
of 0.9. We use a learning rate of 30.0 for ImageNet ILSVRC-
2012 and 10.0 for ImageNet-100. We train using 4 NVIDIA
A40 GPUs.

8.3. Semi-supervised Training
We follow the semi-supervised learning protocol of [3, 15,
27]. We first initialize the network with the parameters of
the pretrained representation, and fine-tune it with a subset
of ImageNet ILSVRC-2012 labels. At training time, we
apply spatial augmentations, i.e., random crops with resize
to 224× 224 pixels and random flips. At test time, im-
ages are resized to 256 pixels along the shorter side using
bicubic resampling, after which a 224 × 224 center crop
is applied. In both cases, we normalize the color channels
by subtracting the average color and dividing by the stan-
dard deviation (computed on ImageNet), after applying the
augmentations. We optimize the cross-entropy loss using
SGD with Nesterov momentum. We used a batch size of
256, a momentum of 0.9. Similar to [1], we sweep over the

learning rates {0.01, 0.02, 0.05, 0.1, 0.005} and the number
of epochs {30, 60}. We train using 4 NVIDIA A40 GPUs.

8.4. Object Detection
We follow the object detection protocol of [5, 11] and as
used in [12]. We first initialize the network with the param-
eters of the pretrained representation, and fine-tune it on
PASCAL VOC and COCO datasets. During training, we
apply spatial augmentations, specifically random resizing
and random horizontal flipping. During testing, images are
resized to a fixed size of 800 pixels along the shorter side.
The R50-C4 backbones, similar to those used in Detectron2
[25], conclude at the conv4 stage. Subsequently, the box
prediction head is composed of the conv5 stage, which
includes global pooling, followed by a BN layer. We train
using 8 NVIDIA RTX 6000 GPUs.

PASCAL VOC object detection. We use a Faster R-CNN
[19] with the SGD optimizer at a base learning rate of 0.02,
a momentum of 0.1, and a weight decay of 0.0001, and a
batch size of 16. The model is trained for 24,000 iterations
using a step learning rate scheduler, where the learning rate
is reduced at 18,000 and 22,000 iterations. Images are scaled
to 480× 800 pixels during training and resized to 800 pixels
on the longer side for inference.

COCO object detection. We use a Mask R-CNN [10]
with the SGD optimizer at a base learning rate of 0.02, a
momentum of 0.1, and a weight decay of 0.0001, and a
batch size of 16. The model is trained for 180,000 iterations
using a step learning rate scheduler, where the learning rate
is reduced at 120,000 and 160,000 iterations. A warm-up
period is applied for the first 100 iterations. Images are
resized to 640× 800 pixels during training and normalized
to 800 pixels on the longer side for inference.

8.5. Alignment and Uniformity
We follow the protocol of [12] but training the network 100
epochs on ImageNet-100. We calculate the alignment and
uniformity based on [24]. The alignment loss Lalign and
uniformity loss Luniform are computed as follows:

Lalign(x,y) = E(x,y)∼pdata [∥x− y∥α2] (11)

Luniform(x) = logEx,y∼pdata

[
exp(−t∥x− y∥22)

]
(12)

where x and y are the embeddings from the network, α is a
hyperparameter typically set to 2, and t controls the sharp-
ness of the distribution, also set to 2. Here, pdata represents
the empirical distribution of the data, from which pairs of
embeddings (x,y) are sampled. We implement these losses
in PyTorch following the original implementation3.

3Available at: https://github.com/Ssnl/align_uniform.

2

https://github.com/Ssnl/align_uniform

8.6. ImageNet-100 Subsets
The list of classes from ImageNet-1004 is randomly sampled
from the original ImageNet ILSVRC-2012 dataset and is the
same as that used in [21].

8.7. Image Augmentations
During self-supervised training, SynCo uses the same aug-
mentation as [5]. The augmentation parameters are detailed
in Table 5.

Table 5. Parameters used to generate image augmentations.

Parameter MoCo-v2
T

Random crop probability 1.0
Horizontal flip probability 0.5
Vertical flip probability 0.8
Brightness adjustment max intensity 0.4
Contrast adjustment max intensity 0.4
Saturation adjustment max intensity 0.2
Hue adjustment max intensity 0.1
Color dropping probability 0.2
Gaussian blurring probability 0.5
Solarization probability 0.0

9. Additional Results
In this section we provide additional results of SynCo.

9.1. Transferring to Detection
We evaluate the SynCo representation using a pretrained
ResNet-50 model trained for 800 epochs on VOC dataset.
The results are shown in Table 6. SynCo demonstrates faster
training, achieving better results at lower epochs compared to
MoCo-v2. At 200 epochs, SynCo already surpasses MoCo-
v2 in terms of AP50 and AP75. However, when training is
extended to 800 epochs, MoCo-v2 and SynCo perform on
par, with both methods reaching similar performance.

Table 6. Results for object detection on PASCAL VOC. The values
in bold indicate the maximum of each column.

Method Epochs AP AP50 AP75

Supervised 90 53.5 81.3 58.8
MoCo [11] 200 55.9 81.5 62.6
MoCo-v2 [5] 200 57.0 82.4 63.6
MoCo-v2 [5] 800 57.4 82.5 64.0
SynCo (ours) 200 57.2 82.6 63.9
SynCo (ours) 800 57.4 82.8 64.0

4Available at: https://github.com/HobbitLong/CMC/
blob/master/imagenet100.txt.

9.2. Class Concentration Analysis
To quantify the overall structure of the learned latent
space, we examine the relationship between within-class
and between-class distances. Figure 6 compares the distribu-
tion of ratios between inter-class and intra-class ℓ2-distances
of representations learned by different MoCo-based con-
trastive learning methods on the ImageNet validation set. A
higher mean ratio indicates that the representations are better
concentrated within their corresponding classes while main-
taining better separation between different classes, suggest-
ing improved linear separability (following Fisher’s linear
discriminant analysis principles [7]).

Table 7. Statistical summary of the ratio between inter-class and
intra-class distances for different MoCo-based methods. Higher
mean indicates better class separation while lower standard devi-
ation suggests more consistent feature learning across different
classes.

Method Epochs Mean ↑ Median Std ↓
Supervised 90 1.381 1.369 0.110
MoCo-v1 [11] 200 1.012 0.999 0.115
MoCo-v2 [5] 200 1.061 0.971 0.358
MoCo-v2 [5] 800 1.146 1.043 0.375
PCL-v1 [17] 200 0.930 0.869 0.312
PCL-v2 [17] 200 0.988 0.866 0.419
SynCo (ours) 200 1.104 1.001 0.383
SynCo (ours) 800 1.384 1.282 0.361

As shown in Table 7, SynCo trained for 800 epochs
achieves the highest mean ratio (1.384) among all MoCo-
based methods, approaching and slightly surpassing the su-
pervised baseline (1.381). A higher mean ratio indicates bet-
ter class separability, which is crucial for downstream classi-
fication tasks. This superior performance can be attributed to
SynCo’s synthetic hard negative generation strategies, which
help create more discriminative feature representations.

The standard deviation of the ratio distribution provides
insight into the consistency of learned features across differ-
ent classes. Lower standard deviation suggests more uniform
feature learning across all classes. While the supervised base-
line achieves the lowest standard deviation (0.110), among
MoCo-based methods, MoCo-v1 shows comparable consis-
tency (0.115).

Notably, both SynCo variants (200 and 800 epochs) con-
sistently outperform their MoCo-v2 counterparts at equiva-
lent training epochs in terms of mean ratio (1.104 vs 1.061 at
200 epochs, and 1.384 vs 1.146 at 800 epochs), demonstrat-
ing the effectiveness of synthetic hard negatives in learning
more discriminative features. The improvement in class con-
centration metrics aligns with SynCo’s superior performance
on downstream tasks, particularly in scenarios requiring fine-
grained discrimination between similar classes. By focusing
exclusively on methods built upon the MoCo framework,

3

https://github.com/HobbitLong/CMC/blob/master/imagenet100.txt
https://github.com/HobbitLong/CMC/blob/master/imagenet100.txt

Figure 6. Distribution of the ratio between inter-class and intra-
class distances for different MoCo-based methods. Higher values
indicate better class separation. For clarity, we only show MoCo-
v2 [5] (800 epochs), PCL-v2 [17] (200 epochs), and SynCo (800
epochs).

this comparison ensures a fair evaluation of SynCo’s contri-
butions to contrastive learning.

9.3. Ablations on CIFAR-100
We perform additional ablation studies on CIFAR-100 [16]
for 32× 32 images for 100-way classification. We use the
same settings as previously discussed with the following
differences. We adopt a ResNet-18 (512 output units) [9]
architecture without the final classification layer, replacing
the original 7× 7 convolutional layer (conv1) with a 3× 3
convolution that has a stride of 1 and removing the initial
max pooling layer (maxpool). The batch size for CIFAR-
10/100 is set to 256, using a single NVIDIA RTX 6000 GPU,
and the total training duration is set to 1,000 epochs. Unless
stated otherwise, we use K = 16k. We report both top-1
and top-5 accuracies as percentages on the test set. When
training a linear classifier on top of frozen features, we use a
learning rate of 3.0.

Ablation on parameters. We evaluate the impact of the
parameters σ, δ, and η on SynCo’s performance, specifically
focusing on type 4, type 5, and type 6 negatives. To deter-
mine the optimal settings, we empirically test three sets of
values for each parameter: 0.1, 0.05, 0.01. The results, illus-
trated in Figure 7, indicate that training SynCo with different
values of these parameters yields similar performance across
all configurations.

Effect of hard negative sampling. We evaluate SynCo by
first training without hard negatives (equivalent to MoCo-
v2) and then by incorporating each type of hard negative
individually, as well as in combination. Additionally, we
test different configurations of the number of hard negatives
(N1 through N6) to find the optimal settings. The results in
Figure 8 show that any incorporation of hard negatives accel-
erates convergence and improves top-1 accuracy, regardless

of type. Increasing the total number of hard negatives beyond
N = 1024 (e.g., to N = 2048) does not further enhance
performance, consistent with findings in MoCHI.

Ablation on queue size. We evaluate the performance of
SynCo across various queue sizes. The results, shown in Fig-
ure 9, compare the top-1 accuracy of SynCo and MoCo-v2
across these different queue sizes. SynCo initially performs
on par with MoCo-v2, with a minimal performance gap,
suggesting that excessively challenging negatives may ini-
tially hinder learning efficacy. As the queue size increases,
both SynCo and MoCo-v2 show comparable performance,
converging further as the queue size maxes out.

Ablation on batch size. We evaluate the effect of varying
batch sizes on the performance of SynCo. We tested batch
sizes of 64, 128, 256, 512, 1024, and 4096. The results are
shown in Figure 10. SynCo consistently outperforms MoCo-
v2 across all batch sizes, even at the smallest batch size of
64. However, larger batch sizes generally lead to degraded
performance for both methods, likely due to the dilution of
gradient signals when averaging over larger batches.

10. Additional Discussion

Intuition of synthetic hard negatives. Each SynCo strat-
egy improves model generalization through challenging con-
trasts. Type 1 interpolates between query and hard negatives,
increasing sample diversity throughout training. Type 2 ex-
trapolates beyond the query, pushing representation space
boundaries and improving robustness to difficult contrasts.
Type 3 combines pairs of hard negatives, encouraging more
generalized and robust feature learning. Type 4 injects Gaus-
sian noise, promoting invariance to minor feature fluctua-
tions and enhancing generalization. Type 5 modifies embed-
dings based on similarity gradients, refining discriminatory
power by directing the model towards harder negatives. Type
6 applies adversarial perturbations, creating the most chal-
lenging contrasts to distinguish deceptively similar samples.

Using hard negatives for model regularization. SynCo
addresses existing limitations by generating hard negatives
on-the-fly, reducing computational overhead while maintain-
ing diverse contrasts. It regularizes the network through syn-
thetic hard negatives, aligning with vicinal risk minimization
[2]. This encourages learning robust features over memoriza-
tion, addressing poor generalization common in empirical
risk minimization [23, 28]. The diverse synthetic negatives
create a comprehensive learning environment, improving
generalization across datasets and tasks. This approach re-
duces overfitting and enhances robustness to data variations,
leading to more robust representations [28].

4

(a) (b) (c)

Figure 7. Top-1 accuracy on CIFAR-100, evaluated every 100 epochs over 1000 epochs of training with varying parameter values. (a)
Performance with different σ values. (b) Performance with different δ values. (c) Performance with different η values.

(a) (b) (c)

Figure 8. Top-1 accuracy on CIFAR-100, evaluated every 100 epochs over 1000 epochs of training. (a) Performance of SynCo with one type
of hard negative at a time. (b) Comparison of SynCo without hard negatives (equivalent to MoCo-v2) and with all hard negatives combined.
(c) Performance of SynCo with varying numbers of hard negatives N1 through N6. Numbers in parentheses represent the maximum N
chosen from the queue Q̂.

(a) (b) (c)

(d) (e) (f)

Figure 9. Top-1 accuracy on CIFAR-100, evaluated every 100 epochs over 1000 epochs of training, comparing SynCo and MoCo-v2. (a)
With queue size K = 1024. (b) With K = 4096. (c) With K = 8192. (d) With K = 16384. (e) With K = 32768. (f) With K = 65536.

Considerations for parameter tuning and optimal use of
synthetic negatives. In our experiments, we searched for
optimal parameters for each type of synthetic negative. We
used all types of synthetic negatives to demonstrate over-
all improvements. However, incorporating fewer synthetic
negatives, rather than all, could potentially lead to higher
accuracy. Here, our focus was on proposing the concept
of synthetic negatives rather than searching for the optimal

combination. The optimal combination of synthetic nega-
tives depends on the specific dataset and task. We also did
not exhaustively search for the most effective number of
synthetic negatives to generate. Instead, we conducted initial
experiments to assess their effectiveness.

Implications of synthetic hard negatives in broader con-
texts. The introduction of synthetic hard negatives in con-

5

(a) (b) (c)

(d) (e) (f)

Figure 10. Top-1 accuracy on CIFAR-100, evaluated every 100 epochs over 1000 epochs of training, comparing SynCo with MoCo-v2. (a)
With batch size of 64. (b) With 128. (c) With 256. (d) With 512. (e) With 1024. (f) With 2048.

trastive learning not only improves model performance in
traditional image classification and detection tasks but also
holds potential for applications beyond the current scope.
Synthetic hard negatives can be adapted for various modal-
ities, including text, audio, and multi-modal learning en-
vironments. For instance, in natural language processing,
generating challenging negative samples could enhance tasks
such as sentence similarity, text classification, and language
translation. Similarly, in audio processing, synthetic hard
negatives might improve tasks like speaker recognition or au-
dio event detection. Moreover, the adaptability of synthetic
hard negatives opens up possibilities for future research into
domain adaptation and transfer learning. By incorporating
domain-specific hard negatives, models can better generalize
across different domains, addressing the challenge of domain
shift in practical applications. This adaptability also suggests
that synthetic hard negatives could be a crucial component
in developing more robust, generalizable machine learning
systems across various fields.

11. Broader Impact

The presented research should be categorized as research in
the field of unsupervised learning. This work may inspire
new algorithms, theoretical, and experimental investigation.
The algorithm presented here can be used for many differ-
ent vision applications and a particular use may have both
positive or negative impacts, which is known as the dual
use problem. Besides, as vision datasets could be biased,
the representation learned by SynCo could be susceptible to
replicate these biases.

12. Checkpoint Availability
The pre-trained model checkpoints for models trained on
the ImageNet ILSVRC-2012 dataset are available for down-
load: 200-epoch model (top-1 linear evaluation accuracy
68.1%) and 800-epoch model (top-1 linear evaluation accu-
racy 70.6%).

References
[1] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal,

Piotr Bojanowski, and Armand Joulin. Unsupervised learn-
ing of visual features by contrasting cluster assignments. In
Advances in Neural Information Processing Systems, pages
9912–9924. Curran Associates, Inc., 2020. 2

[2] Olivier Chapelle, Jason Weston, and Léon Bottou. Vicinal
risk minimization. In Proceedings of the 13th International
Conference on Neural Information Processing Systems, pages
416–422, 2000. 4

[3] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geof-
frey Hinton. A simple framework for contrastive learning of
visual representations, 2020. 1, 2

[4] Xinlei Chen and Kaiming He. Exploring simple siamese
representation learning, 2020. 1

[5] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Im-
proved baselines with momentum contrastive learning, 2020.
1, 2, 3, 4

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, K. Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009. 1

[7] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The
Elements of Statistical Learning: Data Mining, Inference, and
Prediction. Springer, New York, second edition, 2009. 3

[8] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin

6

https://www.dropbox.com/scl/fi/jq7g1ezyaaa6x89s9u2un/resnet50_synco_200ep.pth.tar?rlkey=69jef5ska3jgamhtjt2bbzmmp&st=mkvrtl44&dl=0
https://www.dropbox.com/scl/fi/grm4jtjv4bo5jl0yin359/resnet50_synco_800ep.pth.tar?rlkey=r50w8mmcprjuwqrxk5bnqhbdi&st=fkkbws2q&dl=0

Tallec, Pierre H. Richemond, Elena Buchatskaya, Carl Do-
ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-
mad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi
Munos, and Michal Valko. Bootstrap your own latent: A new
approach to self-supervised learning, 2020. 2

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition, 2015. 1, 4

[10] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn, 2018. 2

[11] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual repre-
sentation learning, 2020. 2, 3

[12] Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe
Weinzaepfel, and Diane Larlus. Hard negative mixing for
contrastive learning, 2020. 1, 2

[13] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna,
Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and
Dilip Krishnan. Supervised contrastive learning, 2021. 1

[14] Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. Re-
visiting self-supervised visual representation learning, 2019.
2

[15] Simon Kornblith, Jonathon Shlens, and Quoc V. Le. Do better
imagenet models transfer better?, 2019. 2

[16] Alex Krizhevsky. Learning multiple layers of features from
tiny images. pages 32–33, 2009. 4

[17] Junnan Li, Pan Zhou, Caiming Xiong, and Steven C. H. Hoi.
Prototypical contrastive learning of unsupervised representa-
tions, 2021. 3, 4

[18] Vinod Nair and Geoffrey Hinton. Rectified linear units im-
prove restricted boltzmann machines vinod nair. pages 807–
814, 2010. 1

[19] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks, 2016. 2

[20] Sebastian Ruder. An overview of gradient descent optimiza-
tion algorithms, 2017. 1

[21] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive
multiview coding, 2020. 3

[22] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-
sentation learning with contrastive predictive coding, 2019.
2

[23] Vladimir N. Vapnik. Statistical Learning Theory. Wiley,
1998. 4

[24] Tongzhou Wang and Phillip Isola. Understanding contrastive
representation learning through alignment and uniformity on
the hypersphere. In International Conference on Machine
Learning, pages 9929–9939. PMLR, 2020. 2

[25] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019. 2

[26] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane
Deny. Barlow twins: Self-supervised learning via redundancy
reduction, 2021. 1

[27] Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre
Ruyssen, Carlos Riquelme, Mario Lucic, Josip Djolonga,
Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy,
Lucas Beyer, Olivier Bachem, Michael Tschannen, Marcin

Michalski, Olivier Bousquet, Sylvain Gelly, and Neil Houlsby.
A large-scale study of representation learning with the visual
task adaptation benchmark, 2020. 2

[28] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. arXiv preprint arXiv:1710.09412, 2017. 4

[29] Shaofeng Zhang, Lyn Qiu, Feng Zhu, Junchi Yan, Hengrui
Zhang, Rui Zhao, Hongyang Li, and Xiaokang Yang. Align
representations with base: A new approach to self-supervised
learning. In The IEEE / CVF Computer Vision and Pattern
Recognition Conference, 2022. 1

7

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

	Algorithm
	Implementation Details
	Pretraining
	Linear Evaluation
	Semi-supervised Training
	Object Detection
	Alignment and Uniformity
	ImageNet-100 Subsets
	Image Augmentations

	Additional Results
	Transferring to Detection
	Class Concentration Analysis
	Ablations on CIFAR-100

	Additional Discussion
	Broader Impact
	Checkpoint Availability

