
Unsupervised Training of Vision Transformers with Synthetic Negatives

Nikolaos Giakoumoglou Andreas Floros Kleanthis Marios Papadopoulos Tania Stathaki
Imperial College London

{nikos, andreas.floros18, kleanthis-marios.papadopoulos18, t.stathaki}@imperial.ac.uk

Image MOBY Ours Image MOBY Ours Image MOBY Ours

Figure 1. Self-attention patterns of the average attention head of DEIT-S from the last transformer layer for MOBY and our approach.

Abstract

This paper does not introduce a novel method per se.
Instead, we address the neglected potential of hard nega-
tive samples in self-supervised learning. Previous works
explored synthetic hard negatives but rarely in the context of
vision transformers. We build on this observation and inte-
grate synthetic hard negatives to improve vision transformer
representation learning. This simple yet effective technique
notably improves the discriminative power of learned rep-
resentations. Our experiments show performance improve-
ments for both DEIT-S and SWIN-T architectures1.

1. Introduction

Computer vision has recently witnessed two major advances.
Self-supervised learning [4, 12] has fundamentally trans-
formed how machines learn from visual data without la-
bels. Concurrently, vision transformer architectures [9, 29]
have reshaped the field by applying attention mechanisms to
image understanding tasks. Self-supervised methods have
proven remarkably effective for building robust visual rep-
resentations [19], often referred to as ”the dark matter of
intelligence” that underpins broader machine comprehen-
sion. As Yann LeCun aptly noted, ”if AI is a cake, self-
supervised learning is the bulk of the cake”. The emergence
of transformer models has complemented this progress by
providing architectures capable of capturing complex rela-
tionships within visual data [9].

1Code will be made available upon acceptance.

Despite their effectiveness, contrastive learning ap-
proaches face a persistent challenge regarding the quality
of negative examples [15]. Standard techniques rely on
randomly sampling negatives from a batch [4, 6] or mem-
ory bank [12, 30], but these negatives are often too easy
to distinguish, limiting the discriminative power of learned
representations [10, 15].

In this work, we address this limitation by integrating
synthetic hard negatives into self-supervised vision trans-
former training. Building upon existing momentum-based
frameworks [11, 12, 31], we generate challenging negative
examples that force the model to learn more discriminative
features [10, 15]. Inspired by recent advances in synthetic
contrastive learning [10], our approach synthesizes hard neg-
atives ”on-the-fly” in the feature space, creating examples
that improve representation quality while maintaining sta-
bility. The key insight of our approach is that synthetic
negatives provide a controlled way to increase the difficulty
of the learning task [10], pushing the model to develop more
robust representations.

Our main contributions include exploring the previously
uninvestigated application of synthetic negatives in vision
transformers. Specifically:

• We demonstrate that synthetic hard negatives can effec-
tively enhance vision transformer representations.

• Our experiments reveal that most configuration settings
provide sufficient contrast for the model to learn highly
discriminative features.

• Our approach seamlessly integrates with existing con-
trastive learning frameworks.

1

Transformer

Transformer

Projector

Projector

input
image

queries

keys

contrastive
loss

Predictor

synthetic
negatives

Figure 2. SYNBY framework overview. Our approach incorporates synthetic hard negatives into the MOBY framework.

2. Related Work
Self-supervised visual representation learning. Self-
supervised learning has emerged as a powerful approach
to learn visual representations without manual annotations.
Within this paradigm, contrastive learning has shown partic-
ular promise and has been widely adopted in various forms
[4, 6, 12, 26]. SIMCLR [4] demonstrated the effectiveness
of a simple framework using data augmentation, large batch
sizes, and nonlinear projection heads. MOCO [12] intro-
duced a momentum encoder and queue-based mechanism,
enabling contrastive learning with smaller batch sizes.

Hard negatives in contrastive learning. The quality of
negative samples in contrastive learning has been a focus
of extensive research [1, 7, 10, 15, 24, 30]. These studies
aim to select informative negative samples and address false
negatives in instance discrimination tasks. Recent work
[15] explored mixing of hard negatives to create challenging
contrasts, showing that harder examples lead to improved
representations. Subsequent works developed this direction,
with newer approaches [10] proposing systematic methods
for generating synthetic hard negatives in the feature space.

Self-supervised transformers for vision. Self-supervised
learning for vision transformers has rapidly evolved [2, 13].
Self-distillation methods operate without labels [3], while
masked modeling approaches draw inspiration from NLP
techniques [2, 13]. MOCO-V3 [6] adapted momentum-based
frameworks for transformers, addressing instability through
fixed patch projection and batch normalization. Other con-
trastive methods like MOBY [31] implemented asymmetric
drop path rates and fewer stability ”tricks”.

3. Background
In this section, we introduce contrastive learning basics (Sec-
tion 3.1) and our framework for generating synthetic hard
negatives (Section 3.2), see Figure 2.

3.1. Contrastive Learning
Contrastive learning aims to learn representations by com-
paring similar and dissimilar samples. Given an image x
and two distribution of image augmentations T and T ′, two
augmented views of the same image are created xq = tq(x)
and xk = tk(x), where tq ∼ T and tk ∼ T ′. These views
are encoded by online and target encoders, fq and fk, re-
spectively, producing vectors q = fq(xq) and k = fk(xk).
The learning objective is to minimize the InfoNCE loss [28]:

L(q,k,Q) = − log
exp(qT · k/τ)

exp(qT · k/τ) +
∑
n∈Q

exp(qT · n/τ)

(1)
Here,Q = {n1,n2, . . . ,nK} is a set of K negative samples
and τ is a temperature parameter. Negative samples are
mined either from the batch [4, 6] or from a memory bank
[12, 22, 26]. The encoder can be updated via momentum
θk ← m · θk + (1 −m) · θq or through weight sharing in
siamese networks (fk ≡ fq).

3.2. Synthetic Hard Negatives
Synthetic negatives provide challenging examples that help
models learn more discriminative features. Let Q̂N =
TopK({sim(q,n) | n ∈ Q}, N) be the subset containing
the N < K hardest negatives, where sim(a,b) is the co-
sine similarity of ℓ2 normalized features. The synthetic hard
negatives can be abstractly represented as a function:

s =
s′

∥s′∥2
where s′ = F(q, Q̂N ; ξ) (2)

where s′ is the raw synthetic negative, s is the normalized
synthetic negative, ∥·∥2 denotes the ℓ2 norm, and ξ repre-
sents the parameters that control the synthesis process (see
Section 8). The synthetic hard negatives {s1, s2, . . .} are
incorporated with real negatives Q in the contrastive loss
of Equation (1), exposing the model to more challenging
contrasts.

2

0 5 10 15 20 25 30 35 40
% of hard negatives

62.0

62.5

63.0

63.5

64.0

64.5

MoBY Ours (N = 256) Ours (N = 512) Ours (N = 1024)

(a) DEIT-S

0 5 10 15 20 25 30 35 40
% of hard negatives

72.0

72.5

73.0

73.5

MoBY Ours (N = 256) Ours (N = 512) Ours (N = 1024)

(b) SWIN-T

Figure 3. Ablation study of different hardness selection values and synthetic negative percentages (see Section 9 for details).

4. Experiments

We develop our approach in PyTorch, building upon the
implementation of MOBY [31] and SYNCO [10]. We refer
to our approach as SYNBY.

4.1. Experimental Details

We pretrain SYNBY on ImageNet ILSVRC-2012 [8] and
its smaller ImageNet-100 subset [16] using a DEIT-Small
[9, 27] or SWIN-Tiny [20] encoder. Our implementation
builds upon MOBY [31]. The encoder fq consists of a
backbone, a projection head [4], and an extra prediction
head [11]; the encoder fk has the backbone and projection
head, but not the prediction head. For training, we use the
AdamW optimizer [21] with a base learning rate of 0.03,
weight decay of 10−4, and batch size of 512. The momentum
parameter starts at mstart = 0.99 and increases to 1 following
a cosine schedule. For synthetic negatives, we select the top
N = 256 hardest negatives. We use a temperature τ = 0.2
for the contrastive loss of Equation (1) and a queue size
K = 4096. We implement a cooldown period for the last
100 epochs where no synthetic negatives are generated. For
ImageNet linear evaluation, we train a linear classifier on
frozen features for 100 epochs. See Section 7 for details.

4.2. Linear Evaluation on ImageNet

Table 1 shows top-1 accuracy of our method after pretrain-
ing for 300 epochs on ImageNet ILSVRC-2012. SYNBY
outperforms the MOBY baseline by 0.2% on both architec-
tures. These results surpass other self-supervised methods
like MOCO-V3 and DINO, demonstrating that synthetic
hard negatives consistently improve representation quality.
While a gap remains compared to supervised training, our
approach improves performance without requiring additional
labeled data or computational overhead.

Table 1. Comparison of various self-supervised learning methods
on DEIT-S and SWIN-T architectures.

Method Arch. Params (M) Top-1 (%)

Supervised DEIT-S 22 79.8
Supervised SWIN-T 29 81.3

MOCO-V3 [6] DEIT-S 22 72.5
DINO [3] DEIT-S 22 72.5

MOBY [31] DEIT-S 22 72.8
MOBY [31] SWIN-T 29 75.0

SYNBY (ours) DEIT-S 22 73.0
SYNBY (ours) SWIN-T 29 75.2

Visualizing attention. Figure 1 shows self-attention pat-
terns comparing SYNBY and MOBY. Our method produces
more focused attention maps with finer-grained patterns
highlighting semantically meaningful regions, suggesting
synthetic hard negatives help develop more discriminative
features that target relevant visual elements.

4.3. Ablation Study
We perform ablations studies of SYNBY on ImageNet-100
pretraining for 100 epochs.

Synthetic negatives. We observe architectural differences
in how DEIT and SWIN transformers respond to synthetic
negatives (see Figure 3). DEIT benefits from mining nega-
tives at either low (256) or high (1024) hardness levels, while
SWIN performs well across all hardness levels. Additionally,
DEIT achieves better results with moderately hard negatives
at medium or high proportions, whereas SWIN performs con-
sistently well with all proportions. This likely stems from
SWIN’s inductive biases requiring less aggressive negative
samples than DEIT’s pure transformer architecture.

3

Table 2. Ablation study on applying tricks of MOCO-V3.

Fixed Patch Replace LN before Top-1 (%)

Embedding MLP with BN DEIT-S SWIN-T

66.7 67.5
✓ 66.4 67.2

✓ 67.2 67.9

Table 3. Ablation study on the drop path rates.

Online Target Top-1 Acc. (%)

dpr dpr DEIT-S SWIN-T

0.1 0.1 61.9 74.3
0.05 0.0 65.0 75.3
0.1 0.0 65.0 75.4
0.2 0.0 64.7 72.7

Table 4. Ablation study on queue size K.

K
Top-1 Acc. (%)

DEIT-S SWIN-T

1024 64.5 72.5
2048 64.5 72.5
4096 64.7 72.7
8192 63.6 72.3
16384 62.6 71.6

Table 5. Ablation study on temperature τ .

τ
Top-1 Acc. (%)

DEIT-S SWIN-T

0.07 59.3 61.5
0.1 61.5 69.2
0.2 64.5 72.7
0.3 64.0 71.7

Table 6. Ablation study on momentum mstart.

mstart
Top-1 Acc. (%)

DEIT-S SWIN-T

0.99 64.5 72.7
0.993 65.2 72.2
0.996 63.8 72.4
0.999 60.3 68.6

Applying MOCO-V3 tricks. Our experiments reveal that
synthetic negatives provide sufficient regularization, elimi-
nating the need for additional stabilization techniques from
MOCO-V3. As shown in Table 2, fixing the patch embed-
ding has minimal impact on performance, suggesting our
synthetic negatives already provide comparable regulariza-
tion. This allows for a simpler implementation without com-
promising performance. Notably, replacing Layer Normal-
ization (LN) with Batch Normalization (BN) before MLP
blocks yields improvements.

Asymmetric drop path rates. The asymmetric configu-
ration of drop path rates (dpr) significantly impacts model
performance (Table 3). Unlike MOBY which uses 0.2 for
the online encoder, we find a smaller rate of 0.05 is optimal
when combined with synthetic negatives. This suggests the
synthetic negatives provide additional regularization, reduc-
ing the need for aggressive drop path. Applying drop path
only to the online encoder while keeping the target encoder
stable yields the best balance.

Other hyper-parameters. The default hyperparameters
from MOBY work effectively with our synthetic negative ap-
proach. As shown in Tables 4 to 6, performance remains sta-
ble across different queue sizes (best at 4096), temperatures
(optimal at 0.2), and momentum values (best at 0.99). This
demonstrates that synthetic negatives can be incorporated
without extensive re-tuning of existing parameters. This sug-
gests our synthetic negative generation technique integrates
seamlessly with established contrastive learning frameworks,
requiring minimal adaptation effort.

5. Conclusion
In this paper, we explored synthetic negatives in vision
transformer pretraining. We found that synthetic negatives
provide enough regularization that we do not need high
drop path rates, while still requiring an asymmetric drop
path rate configuration for improved performance. Impor-
tantly, our approach requires minimal adjustments to current
frameworks, working in a ”plug-and-play” manner with ex-
isting architectures. The experimental results demonstrate
that SYNBY further improves representation learning with
minimal computational overhead, showing consistent gains
across different transformer architectures.

Limitations. Our ablation studies were conducted on
ImageNet-100, which may not fully capture the behavior
on larger-scale datasets.

Future work. Synthetic hard negatives have proven ef-
fective for vision transformers, but their application could
be extended to multimodal models. Exploring their integra-
tion into vision-language frameworks like CLIP represents
a promising direction, potentially enhancing cross-modal
contrastive learning through more challenging negative ex-
amples.

Acknowledgments
We acknowledge the computational resources and support
provided by the Imperial College Research Computing
Service (http://doi.org/10.14469/hpc/2232),
which enabled our experiments.

4

http://doi.org/10.14469/hpc/2232

References
[1] Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak,

Orestis Plevrakis, and Nikunj Saunshi. A theoretical analysis
of contrastive unsupervised representation learning, 2019. 2

[2] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit:
Bert pre-training of image transformers, 2022. 2

[3] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers, 2021. 2,
3

[4] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geof-
frey Hinton. A simple framework for contrastive learning of
visual representations, 2020. 1, 2, 3, 6

[5] Xinlei Chen and Kaiming He. Exploring simple siamese
representation learning, 2020. 6

[6] Xinlei Chen, Saining Xie, and Kaiming He. An empirical
study of training self-supervised vision transformers, 2021. 1,
2, 3

[7] Ching-Yao Chuang, Joshua Robinson, Yen-Chen Lin, An-
tonio Torralba, and Stefanie Jegelka. Debiased contrastive
learning. In Advances in Neural Information Processing Sys-
tems, pages 8765–8775, 2020. 2

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, K. Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009. 3, 6

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale, 2021. 1, 3, 6

[10] Nikolaos Giakoumoglou and Tania Stathaki. Synco: Synthetic
hard negatives in contrastive learning for better unsupervised
visual representations, 2024. 1, 2, 3, 7

[11] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre H. Richemond, Elena Buchatskaya, Carl Do-
ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-
mad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi
Munos, and Michal Valko. Bootstrap your own latent: A new
approach to self-supervised learning, 2020. 1, 3, 6

[12] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual repre-
sentation learning, 2020. 1, 2, 6, 7

[13] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners, 2021. 2

[14] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift, 2015. 6

[15] Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe
Weinzaepfel, and Diane Larlus. Hard negative mixing for
contrastive learning, 2020. 1, 2

[16] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna,
Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and
Dilip Krishnan. Supervised contrastive learning, 2021. 3, 6

[17] Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. Re-
visiting self-supervised visual representation learning, 2019.
7

[18] Simon Kornblith, Jonathon Shlens, and Quoc V. Le. Do better
imagenet models transfer better?, 2019. 7

[19] Xiao Liu, Fanjin Zhang, Zhenyu Hou, Liming Mian, Zhaoyu
Wang, Jing Zhang, and Jie Tang. Self-supervised learning:
Generative or contrastive. IEEE Transactions on Knowledge
and Data Engineering, 35(1):21–40, 2021. 1

[20] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows, 2021.
3, 6

[21] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization, 2019. 3, 6

[22] Ishan Misra and Laurens van der Maaten. Self-supervised
learning of pretext-invariant representations, 2019. 2

[23] Vinod Nair and Geoffrey Hinton. Rectified linear units im-
prove restricted boltzmann machines vinod nair. pages 807–
814, 2010. 6

[24] Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and Ste-
fanie Jegelka. Contrastive learning with hard negative sam-
ples. In International Conference on Learning Representa-
tions, 2021. 2

[25] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive
multiview coding, 2020. 7

[26] Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan,
Cordelia Schmid, and Phillip Isola. What makes for good
views for contrastive learning? In Advances in Neural Infor-
mation Processing Systems, pages 6827–6839. Curran Asso-
ciates, Inc., 2020. 2

[27] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through atten-
tion, 2021. 3, 6

[28] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-
sentation learning with contrastive predictive coding, 2019.
2

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems, pages 5998–6008, 2017. 1

[30] Zhirong Wu, Yuanjun Xiong, Stella Yu, and Dahua Lin. Un-
supervised feature learning via non-parametric instance-level
discrimination, 2018. 1, 2

[31] Zhenda Xie, Yutong Lin, Zhuliang Yao, Zheng Zhang, Qi Dai,
Yue Cao, and Han Hu. Self-supervised learning with swin
transformers, 2021. 1, 2, 3, 6

[32] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane
Deny. Barlow twins: Self-supervised learning via redundancy
reduction, 2021. 6

[33] Shaofeng Zhang, Lyn Qiu, Feng Zhu, Junchi Yan, Hengrui
Zhang, Rui Zhao, Hongyang Li, and Xiaokang Yang. Align
representations with base: A new approach to self-supervised
learning. In The IEEE / CVF Computer Vision and Pattern
Recognition Conference, 2022. 6

5

Unsupervised Training of Vision Transformers with Synthetic Negatives

Supplementary Material

Contents
1. Introduction 1

2. Related Work 2

3. Background 2
3.1. Contrastive Learning 2
3.2. Synthetic Hard Negatives 2

4. Experiments 3
4.1. Experimental Details 3
4.2. Linear Evaluation on ImageNet 3
4.3. Ablation Study 3

5. Conclusion 4

6. Algorithm 6

7. Implementation Details 6
7.1. Pretraining 6
7.2. Linear Evaluation 7
7.3. ImageNet-100 Subsets 7

8. Synthetic Hard Negatives 7

9. Ablations 7

6. Algorithm
Algorithm 1 provides the pseudo-code of our method.

7. Implementation Details
We develop our approach in PyTorch, building upon the
implementation of MOBY. While MOBY integrates two
self-supervised learning methods, MOCO-V2 and BYOL,
our method combines SYNCO with BYOL. Since SYNCO
extends MOCO-V2 by introducing synthetic hard negatives,
our method reduces to MOBY when no synthetic negatives
are generated. We refer to our approach as SYNBY.

7.1. Pretraining
Datasets. We evaluate our method on ImageNet ILSVRC-
2012 [8], which includes 1000 classes and is commonly used
in previous self-supervised methods [4, 5, 32, 33]. We also
conduct ablation studies on ImageNet-100 [16], a subset of
100 classes derived from ImageNet.

Architecture. Our encoder fq consists of a backbone, a
projection head [4], and an extra prediction head [11]; the

encoder fk has the backbone and projection head, but not the
prediction head. The encoder fk is updated by the moving
average of fq [11, 12]. As our base encoder, we adopt ViT-
Small [9, 27] or SWIN-Tiny [20] architecture without the
final classification layer. Both the projection head and the
prediction head are 2-layer MLPs. The hidden layers of both
MLPs are 4096-d and are with ReLU [23]; the output layers
of both MLPs are 256-d, without ReLU. All layers in both
MLPs have batch normalization [14].

Optimization. We follow the same setting as [31]. We
utilize the AdamW optimizer [21] with a base learning rate
of 0.03 and a weight decay of 10−4. The training schedule
begins with a warm-up period during the first 30 epochs
in which the learning rate linearly increases from 0 to the
base learning rate. Following this, the learning rate grad-
ually decreases to zero following a cosine decay schedule
without restarts. For the target network, the exponential
moving average parameter m starts from mstart = 0.99 and
is increased to one during training. Specifically, we set
m ≜ 1− (1−mstart) ·

(
cos

(
πk
K

)
+ 1

)
/2, with k the current

training step and K the maximum number of training steps.
We use a batch size of 512 split over 4 NVIDIA L40S GPUs.

Augmentation. We use the same set of image augmenta-
tions as in BYOL [11]. First, a random patch of the image is
selected and resized to 224× 224 with a random horizontal
flip, followed by a color distortion, consisting of a random
sequence of brightness, contrast, saturation, hue adjustments,
and an optional grayscale conversion. Finally Gaussian blur
and solarization are applied to the patches.

Table 7. Parameters used to generate image augmentations.

Parameter BYOL
T T ′

Random crop probability 1.0 1.0
Flip probability 0.5 0.5
Flip probability 0.8 0.8
Brightness adjustment max intensity 0.4 0.4
Contrast adjustment max intensity 0.4 0.4
Saturation adjustment max intensity 0.2 0.2
Hue adjustment max intensity 0.1 0.1
Color dropping probability 0.2 0.2
Gaussian blurring probability 1.0 0.1
Solarization probability 0.0 0.2

6

Hard negatives generation. We follow the same setting
as [10]. Specifically, we set αmax = 0.5, βmax = 1.5, γk
is randomly sampled from a uniform distribution in the
range (0, 1), σ = 0.01, δ = 0.01, and η = 0.01 (see
ξ in Equation (2)). For hard negative generation, we se-
lect the top N = 256 hardest negatives and set Ni = 128
(i = 1, 2, . . . , 6) to maintain a balanced total number of
generated hard negatives (see Section 8). We implement a
cooldown period for the last 100 epochs where no synthetic
negatives are generated2.

7.2. Linear Evaluation
We follow the linear evaluation protocol of [12] and as in
[17, 18], which consists in training a linear classifier on top
of the frozen features pretrained with our SYNBY method
without updating the backbone network parameters or batch
statistics. During training, we apply spatial augmentations
including random crops with resize to 224× 224 pixels and
horizontal flips. At test time, images are resized to 256 pixels
along the shorter side using bicubic resampling, followed
by a 224 × 224 center crop. For both stages, we normal-
ize color channels by subtracting the mean and dividing by
the standard deviation after applying augmentations. We
optimize the cross-entropy loss using SGD with Nesterov
momentum of 0.9 over 100 epochs with a batch size of 512.
We use a base learning rate of 1.0, scaled linearly according
to batch size. We employ a cosine learning rate schedule
with 5 warm-up epochs and set weight decay to 0.0. We
keep the backbones frozen throughout training. Importantly,
we do not apply any other regularization techniques such as
gradient clipping or logits regularization, as these can mask
the true quality of learned representations.

7.3. ImageNet-100 Subsets
The list of classes from ImageNet-1003 is randomly sampled
from the original ImageNet ILSVRC-2012 dataset and is the
same as that used in [25].

8. Synthetic Hard Negatives
Applying the formulation from [10], we implement six
functions F1,F2, ...,F6 for generating synthetic negatives
N1, N2, ..., N6, each providing a different instantiation of F
in Equation 2:

F1(q, Q̂N ;α) = α · q+ (1− α) · ni (3)

F2(q, Q̂N ;β) = ni + β · (ni − q) (4)

2As shown in [10], training with synthetic negatives for longer epochs
can harm performance, potentially making the learning task too difficult to
solve as the model converges.

3Available at: https://github.com/HobbitLong/CMC/
blob/master/imagenet100.txt.

F3(q, Q̂N ; γ) = γ · ni + (1− γ) · nj (5)

F4(q, Q̂N ;σ) = ni +N (0, σ2 · I) (6)

F5(q, Q̂N ; δ) = ni + δ · ∇ni
sim(q,ni) (7)

F6(q, Q̂N ; η) = ni + η · sign(∇nisim(q,ni)) (8)

where ni,nj ∈ Q̂N are randomly selected negative ex-
amples from the set of hardest negatives. The parameters
controlling generation include: α ∈ (0, 0.5) for interpo-
lation coefficient, β ∈ (1, 1.5) for extrapolation magni-
tude, γ ∈ (0, 1) for mixing weight between negatives, and
σ = δ = η = 0.01 for noise and perturbation strengths.
In these equations, I is the identity matrix, N (0, σ2 · I)
represents Gaussian noise with zero mean and variance σ2,
sim(·, ·) is the cosine similarity function, ∇ni denotes the
gradient with respect to ni, and sign(·) returns the element-
wise sign of the gradient. These functions produce synthetic
negatives through interpolation, extrapolation, feature mix-
ing, noise injection, gradient-based perturbation, and sign-
based adversarial perturbation, respectively [10].

9. Ablations
The effectiveness of synthetic negatives depends critically on
the selection of appropriate configuration parameters, partic-
ularly the hardness selection value N and the number of syn-
thetic negatives generated from each strategy. To systemati-
cally explore this parameter space, we conducted extensive
ablation studies with different configurations (Figure 3). The
hardness selection value N determines how many of the most
challenging negative samples from the queue are considered
for synthetic negative generation. We experimented with
three different values: N ∈ 256, 512, 1024. A smaller N
restricts the selection to only the most similar (and thus most
challenging) negatives, while a larger N includes a broader
range of negative samples in the synthesis process. For each
synthetic negative generation function Fi, the parameter Ni

controls how many synthetic negatives are created using
that particular strategy. To maintain tractable experimental
complexity, we grouped parameters as N1 = N2 = N3

and N4 = N5 = N6, and tested various combinations:
(N1, N4) ∈ { (64, 32), (128, 64), (128, 128), (256, 64),
(256, 128), (256, 256), (512, 64), (512, 128), (512, 256) }.
The proportion of synthetic negatives relative to real nega-
tives can be quantified as:

p =

∑6
i=1 Ni

K +
∑6

i=1 Ni

(9)

where K = 4096 is the queue size and
∑6

i=1 Ni represents
the total number of synthetic negatives.

7

https://github.com/HobbitLong/CMC/blob/master/imagenet100.txt
https://github.com/HobbitLong/CMC/blob/master/imagenet100.txt

Algorithm 1 Pseudocode of SYNBY in a PyTorch-like style.

f_q, f_k: transformer-based encoders (online/target)
g_q, g_k: projector networks (online/target)
h_q: predictor network
odpr: online drop path rate
tdpr: target drop path rate
m: momentum coefficient
t: temperature coefficient
F: list of functions to generate synthetic negatives
N_hard: number of hardest negatives to select
queue1, queue2: feature queues for storing negative samples

define the loader
loader = get_data_loader()

online and target networks
f_online = lambda x: h_q(g_q(f_q(x, drop_path_rate=odpr)))
f_target = lambda x: g_k(f_k(x, drop_path_rate=tdpr))

for x in loader: # load a batch of images
get two augmented views
v1, v2 = augment(x), augment(x)

forward pass
q1, q2 = f_online(v1), f_online(v2) # queries: NxC

with no_grad():
momentum update of target network
f_target = m * f_target + (1. - m) * f_online

compute target features
k1, k2 = f_target(v1), f_target(v2) # keys: NxC

positive logits: Nx1
l_pos1 = bmm(q1.view(N,1,C), k2.view(N,C,1))
l_pos2 = bmm(q2.view(N,1,C), k1.view(N,C,1))

negative logits: NxK
l_neg1 = mm(q1.view(N,C), queue2.view(C,K))
l_neg2 = mm(q2.view(N,C), queue1.view(C,K))

find indices of the top hardest negatives
idxs_hard1 = topk(l_neg1, k=N_hard)
idxs_hard2 = topk(l_neg2, k=N_hard)

apply all synthetic negative generation functions
for func in F:

generate synthetic negatives for view 1
s_neg1 = func(q1, queue2, idxs_hard1)
l_syn1 = mm(q1.view(N,C), s_neg1.transpose(0,1))
l_neg1 = cat([l_neg1, l_syn1], dim=1)

generate synthetic negatives for view 2
s_neg2 = func(q2, queue1, idxs_hard2)
l_syn2 = mm(q2.view(N,C), s_neg2.transpose(0,1))
l_neg2 = cat([l_neg2, l_syn2], dim=1)

logits: Nx(1+K+N_syn) where N_syn depends on enabled types
logits1 = cat([l_pos1, l_neg1], dim=1)
logits2 = cat([l_pos2, l_neg2], dim=1)

symmetric contrastive loss
labels = zeros(N, dtype=long) # positives are the 0-th
loss = CrossEntropyLoss(logits1/t, labels) + CrossEntropyLoss(logits2/t, labels)

SGD update: online network
loss.backward()
update(f_online)

update queue
enqueue_dequeue(queue1, k1)
enqueue_dequeue(queue2, k2)

8

	Introduction
	Related Work
	Background
	Contrastive Learning
	Synthetic Hard Negatives

	Experiments
	Experimental Details
	Linear Evaluation on ImageNet
	Ablation Study

	Conclusion
	Algorithm
	Implementation Details
	Pretraining
	Linear Evaluation
	ImageNet-100 Subsets

	Synthetic Hard Negatives
	Ablations

