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Figure 1. Vision Transformer (DeiT-Small/16) attention visualization of SynCo-v2. For each image set, we show the input image, CLS
token attention, and patch attention maps from our method. Our approach with memory and synthetic hard negatives produces focused
attention on semantically important regions with clear object boundaries and fine-grained details.

Abstract

Self-supervised vision transformers are powerful and
have achieved impressive results, including generalizing
on unseen data and emergent abilities. Current joint em-
bedding architectures can be formulated as either using no
negatives (embedding alignment) or using negative samples
(contrastive learning). We introduce SynCo-v2, a method
that integrates synthetic hard negatives into unsupervised
pretraining to improve representation quality. Our approach
demonstrates consistent improvements on: (i) ImageNet lin-
ear evaluation accuracy (improvement up to +6.9% com-
pared to without synthetic negatives), (ii) transfer learning
performance across downstream datasets, and (iif) emer-
gent properties where self-supervised vision transformer
features contain explicit information about the semantic seg-
mentation of an image and serve as excellent k-NN clas-
sifiers (improvement up to +11.3%). Notably, SynCo-v2
achieves these benefits through simple modifications to ex-
isting contrastive frameworks, without requiring specialized
techniques like centering, sharpening, or multi-crop training
used by DINO [12]. These findings motivate reconsidering
contrastive learning as a simpler yet powerful alternative to
dominant generative and self-distillation approaches. '
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1. Introduction

Transformers [63] have transformed computer vision, es-
tablishing themselves as powerful alternatives to ConvNets
[21, 43, 61]. Their adoption has been coupled with a training
strategy inspired by NLP, i.e., pretraining on large quantities
of data and finetuning on the target dataset [21, 61]. As these
models scale to billions of parameters and are trained on
increasingly large and diverse datasets, they have demon-
strated remarkable capabilities in both supervised and self-
supervised learning paradigms, achieving state-of-the-art
performance across numerous benchmarks [27, 30, 48].

Self-supervised learning has established itself as a pow-
erful approach for visual representation learning, enabling
models to extract meaningful patterns from vast amounts of
unlabeled data [3, 7, 25, 42]. Self-supervised approaches
for vision fall into three categories: (i) pretext task methods
that solve auxiliary tasks such as rotation prediction [26, 47]
or jigsaw puzzles [47]; (ii) generative methods that recon-
struct or predict masked portions of inputs, such as MAE
[30] inspired by masked language modeling [8, 20, 54, 55],
and BEIT [4] following BERT-like pretraining [20, 41]; and
(iii) joint embedding architecture methods that learn repre-
sentations by comparing different views of data in a shared
embedding space [12, 13, 28, 29, 56]. This work focuses
on training transformers with joint embedding architectures,
unlike prior works using generative methods [4, 30, 50].
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Figure 2. Self-supervised learning categories on vision transformers and this paper’s contribution. From left to right: (a) contrastive
learning method [16, 65]; (b, c) self-distillation [12, 28]; (d) clustering-based [49]; and (e) SynCo-v2 (ours). Our method introduces
synthetic hard negatives generated “on-the-fly” to improve contrastive learning methods for vision transformers. Shaded circles O represent
observed variables, dashed gray lines indicate the momentum update, // indicates a stop-gradient for backpropagation, represent
functions, and represent loss functions. Abbreviations legend: Enc: encoder, Proj: projector, Pred: predictor.

The joint embedding methods adapted for vision trans-
formers fall into three categories shown in Fig. 2, each us-
ing different “tricks” to avoid representational collapse: (i)
contrastive learning methods embed different augmented
views of the same image into a joint space, maximizing
similarity between same-instance embeddings while mini-
mizing similarity across instances [13, 16, 29, 65] (Fig. 2a);
(ii) self-distillation (teacher—student) methods train a stu-
dent to match a teacher’s embeddings without negatives
[5, 6, 12, 28] (Figs. 2b and 2c¢); and (iii) clustering-based
methods employ clustering objectives [9—11, 49] (Fig. 2d).

Transformers trained with these joint embedding archi-
tecture methods exhibit emergent properties that go beyond
standard classification accuracy, as their features contain
explicit information about the semantic segmentation of an
image, which does not emerge as clearly with supervised
transformers, nor with convolutional neural networks [12].
Self-distillation methods like DINO [12, 48, 58] and iBOT
[71] demonstrate strong unsupervised semantic segmenta-
tion, with attention naturally aligning to object boundaries
and meaningful regions without supervision.

Despite generative methods achieving higher accuracy
[4, 30], joint embedding approaches remain important,
achieving competitive accuracy and often surpassing gen-
erative methods in linear probing [6, 48]. Among these
approaches, contrastive learning methods stand out for their
simplicity and computational efficiency [16, 65], explicitly
using negative samples to define representation boundaries
[13, 29], yet they have received less attention recently.

We seek to answer the simple question:

Can simple modifications to negative sampling
strategies in contrastive learning unlock stronger
representations and emergent properties for vision
transformers comparable to or exceeding those of
self-distillation methods?

In this paper, we address this question by integrating
synthetic hard negative generation in transformer-based con-
trastive learning, a strategy previously demonstrated effec-
tive for convolutional networks [24, 35] but not investigated
for vision transformers. Instead of using complex architec-
tures or training schemes (like multi-crop, centering, sharp-
ening, efc., see Section 2), we adapt established synthetic
negative generation approaches to transformer architectures,
generating challenging samples “on-the-fly” through six com-
plementary transformation strategies [24].

Through an extensive empirical evaluation, we demon-
strate that integrating synthetic hard negatives into trans-
former self-supervised learning leads to three main improve-
ments compared to training without synthetic hard nega-
tives or without negatives: (i) increased top-1 accuracy
on ImageNet linear evaluation (Tabs. | and 2), achieving
73.1% with DeiT and 75.4% with Swin; (ii) improved trans-
fer learning performance across diverse downstream tasks
(Tabs. 5 and 6); and (iii) strong emergent properties, where
self-supervised vision transformer features contain explicit
information about the semantic segmentation of an image
(Section 4.3), producing precise attention maps that capture
object boundaries (Fig. 4) and serve as excellent k-NN clas-
sifiers (Tabs. 1 and 2), achieving 71.0% top-1 accuracy with
DeiT.



2. Related Work

Joint embedding architectures. Joint embedding archi-
tecture methods map augmented views into a shared embed-
ding space while avoiding representational collapse through
distinct mechanisms. Contrastive learning methods prevent
collapse using large batch sizes [13] or momentum-encoded
memory banks [15, 16, 29, 65] to provide sufficient negative
samples. Alternative approaches formalize collapse avoid-
ance via mutual information [31, 59, 62]. Self-distillation
(a.k.a. teacher-student distillation) methods surprisingly
avoid collapse without negatives. They use asymmetric archi-
tectures [14], momentum updates [12, 28], and stop-gradient
operations [12, 14, 28]. Alternatively, they explicitly regular-
ize feature covariance so representations do not collapse, e.g.,
decorrelate features [5, 69], employ whitening [23], or mani-
fold regularization [68]. Notably, DINO [12, 48, 58], which
employs multiple techniques including centering, sharpen-
ing, momentum encoder, multi-crop training [11], and ex-
tended training, and iBOT [71], which integrates masked
patch prediction, exhibit strong unsupervised segmentation.
Unlike contrastive learning or self-distillation methods, I-
JEPA [2] and V-JEPA [6] avoid collapse via their predictive
structure and architectural asymmetry, not through negative
samples or variance constraints. Finally, clustering-based
approaches align embeddings with prototype assignments
obtained via the Sinkhorn-Knopp algorithm [11] or via mo-
mentum grouping [49].

Contrastive learning. Contrastive learning methods treat
instance discrimination as a pretext task, treating each im-
age as its own class [13, 29]. The core principle involves
bringing an anchor and a “positive” sample closer in the
embedding space while pushing the anchor away from “neg-
ative” samples [36]. Training typically employs InfoNCE
loss [62] or its variants [13, 22, 60, 67], maximizing mu-
tual information between positive pairs while minimizing
it for negatives. Negative samples are drawn from large
batch sizes [13] or memory banks [15, 16, 29, 65]. The con-
cept of challenging negative samples has been explored as a
way to improve contrastive learning models. These samples,
which lie close to the decision boundary, are crucial for re-
fining the model’s discriminative abilities [1, 57]. Various
strategies leverage hard negatives through mixup-based in-
terpolation between embeddings [35], debiased contrastive
losses with theoretical analysis [57], importance reweighting
schemes [67], and hardness-aware sampling from memory
queues [60]. Systematic synthetic generation through trans-
formation strategies has proven effective for convolutional
networks [24]. Our method adapts synthetic hard negative
generation to vision transformers by generating diverse, in-
formative negatives “on-the-fly” rather than relying solely
on batch size or memory bank capacity.

3. Methodology

In this section, we introduce our approach, named SynCo-v2.
Our method builds upon existing contrastive learning frame-
works (see Figure 2a) and aims to improve representation
quality by generating informative negative samples (see Fig-
ure 2¢). The overall framework of our method is illustrated
analytically in Figure 3.

3.1. SynCo-v2

Like other joint embedding methods, SynCo-v2 also oper-
ates on the embedding pairs of distorted images. Specifically,
given an image x, and two distributions of image augmen-
tation 74, Ty, we create two augmented views of the same
image using the transformations t, ~ 7, and ¢, ~ Ty, i.e,
Xq = tq(x) and x5 = ti(x).

Then, we use two encoders fp and f¢, two projectors
ge and ge¢, and a predictor hy with parameters 6 and £ to
generate the corresponding embeddings q and k, where
a = he(ge(fo(xq))) and k = g¢(fe(xx)), and g,k € R?
[28, 65]. We denote the online branch as fy, gy, and hyg,
and the target branch as f¢ and g¢, with parameters 6 and &,
respectively. We assume that the outputs are £5-normalized.

We maintain a memory queue Q = {nj,ns,...,ng}
that consists of features from distinct images, serving as K
negative samples [15, 16, 29, 65]. In here we set K = 4096.
The negative samples {n,}X ; are embeddings generated
from the target branch in previous steps and stored in the
memory bank, which requires memory size O(K - d), where
d is the embedding dimension.

We use a momentum update such that only the parameter
0 is updated through backpropagation, while the parameter
¢ is maintained as the exponential moving average of 6:

E+~m-{+(1—m)-0 (1)

where m € [0, 1] is the momentum coefficient that controls
the update rate [28, 65]. This momentum mechanism ensures
gradual evolution of f¢, improving the stability of negative
samples across training iterations [29].

To generate synthetic hard negatives, we define the hard-
ness of negative samples by their similarity to the query, mea-
sured through the logit values ¢(n;) = q' - n;. To identify
the most challenging negatives, we order all negative features
by decreasing similarity, i.e., Q= {ni,n,,...,ng} where
{(n;) > £(n;) for all i < j. The top-N hardest negatives
are then selected as O by truncating this ordered set. We
define a general framework for synthetic negative generation
where s, represents the k-th synthetic negative from the i-th
strategy. All synthetic negatives are {2-normalized to ensure
consistency with the representation space geometry. Fol-
lowing [24, 35], we implement six distinct transformation
strategies:
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Figure 3. SynCo-v2 architecture diagram. SynCo-v2 extends MoBY [65] through the “on-the-fly” generation of synthetic hard negatives
from the memory queue. Shaded circles O represent observed variables, while empty circles O represent computed values, // indicates a
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where n;,n; € ON are selected hard negatives, and
sim(q,n;) = q' - n; represents the cosine similarity func-
tion. (i) Interpolated negatives (i = 1) create synthetic
examples between the query and hard negatives, where
ay € (0,0.5) controls the balance between query and neg-
ative contributions. (ii) Extrapolated negatives (i = 2) ex-
plore directions beyond hard negatives, where S, € (1,1.5)
determines the extrapolation distance. (iii) Mixup negatives
(¢ = 3) combine pairs of hard negatives with mixing coeffi-
cient v € (0, 1). (iv) Noise-injected negatives (i = 4) add
controlled stochasticity with Gaussian noise (o = 0.01). (v)
Perturbed negatives (i = 5) modify hard negatives using
gradient-based perturbations with 6 = 0.01. (vi) Adversar-
ial negatives (i = 6) apply sign-based perturbations with
strength 7 = 0.01.

The complete set of synthetic hard negatives is formed
as S = |J°_, 5%, where S° = {si, s}, ...} contains all |S?|
synthetic negatives generated by the ¢-th strategy. These
synthetic negatives require memory size O(|S| - d), where
|S| = Z?:l |S?| < K. We augment the memory queue’s
negative samples with synthetically generated hard negatives
by calculating the denominator Z that comprises contribu-
tions from both memory-based and synthetic negatives:

Z=Y expla” -n/r)+ Y expla” -s/7) (3)

neQ seS

where 7 is the temperature parameter. We set 7 = 0.2.
Finally, we optimize the combined negative set using the
InfoNCE loss function:

exp(q' - k/7)
exp(q" -k/7)+ Z°

L(q7 ka Q7 S) = - IOg (4)

Relation to MoBY. When no synthetic hard negatives are
generated (i.e., S = ()), our method reduces to the standard
InfoNCE loss used by MoBY [65] and MoCo-v3 [16] for
vision transformers (Figure 2a):

exp(q' - k/7)
exp(q’ - k/7)+ > exp(qT -n/7)’

ncQ
&)

E(qa ka Q) = - lOg

Relation to BYOL. When we replace the InfoNCE loss
with a mean squared error loss between the query q and
key k representations, our method reduces to DINO [12]
(Figure 2b) without “tricks” or to BYOL [28] (Figure 2c):

1
Lyse(q, k) = §Hq—kH§ (6)

In this case, SynCo-v2 does not need negative samples at all,
and uses only the momentum encoder and predictor head
to avoid collapse, showing that our method can adapt to
different learning approaches.



3.2. Implementation and Evaluation Protocols

Vision Transformer. We adopt DeiT-Small/16 [21, 61]
or Swin-Tiny/ 7 [43] as the backbone fy. The projection
(go) and prediction (hy) heads are two-layer MLPs. Their
hidden layers are 4096-dim with ReL.U [45], and outputs are
256-dim without ReLU. All MLP layers use BN [33].

Implementation details. We pretrain on ImageNet
ILSVRC-2012 [19] and ImageNet-100 [36] without labels.
Following MoBY [65], we use AdamW [44] across 4 GPUs
with batch size 512, base learning rate 0.03, and weight de-
cay 10~%. Training spans 300 epochs. The target-network
EMA parameter m starts at mg,; = 0.99 and increases
linearly to 1. We adopt BYOL augmentations [28]. For syn-
thetic negatives, we select the top N = 256 negatives from
the memory queue and generate 128 synthetic hard negatives
per anchor using six transformation strategies (Section 3.1).
Finally, we apply asymmetric drop path rates [32] of 0.2 to
the online encoder and 0.0 to the target encoder, as in [65].

Evaluation protocols. We follow standard self-supervised
learning evaluation protocols to assess the quality of learned
representations [13, 29, 70]. Three primary approaches are
used: (i) linear probing evaluation, where a linear classifier
is trained on frozen features while keeping the backbone net-
work fixed; (ii) full fine-tuning, where all model parameters
are updated on downstream tasks; and (iii) k-NN evaluation,
where the model’s learned features are used to predict labels
using a k-nearest neighbors classifier.

4. Main Results

In this section, we present experimental results validating
the effectiveness of SynCo-v2 for vision transformers, with
implementation details in Sec. 7 and analytical results with
robustness evaluation in Sec. 8 of the supplementary.

4.1. Linear Evaluation on ImageNet

We evaluate SynCo-v2 by training a linear classifier on top
of the frozen representation following standard protocols [37,
38]. We report top-1, top-5 accuracies, and k-NN (k = 10)
performance in Tables | and 2. On DeiT-Small, SynCo-v2
improves over MoBY (no synthetic negatives) by +0.8% and
over BYOL (no negatives at all) by +2.8 %, whereas the k-
NN evaluation shows larger gains, with SynCo-v2 achieving
+6.7% over MoBY and +8.5% over BYOL, demonstrating
that synthetic hard negatives produce features particularly
well-suited for nearest neighbor-based classification. On
Swin-Tiny, SynCo-v2 gains +0.7 % over MoBY and +6.9 %
over BYOL in linear evaluation, and achieves +1.5% and
+11.3% improvements in k-NN, respectively.

Method Epochs Top-1 Top-5 k-NN
Supervised [61] 300 79.8 - -
SimCLR [13]f 300  69.0 - -
MoCo-v2 [15]} 300 714 - -
BYOL [28]f 300 71.0 - -
SwAV [11]1 300 67.1 - -
MoCo-v3 [16]1 300 725 - -
DINO [12]* 300 725 - 679
BeiT [4]8 300 157 - -
CAE[17]8 300 518 - -
MoBY [65] 300 728 -

BYOL [28]* (repr) 300 703  91.0 625
MoBY [65]** (repr.) 300 723 883 643

SynCo-v2 (ours) 300 731 914 71.0

Table 1. Linear and k-NN DeiT classification on ImageNet.
Results show top-1 and top-5 accuracy (in %) and k-NN ac-
curacy for k = 10. All methods do not employ multi-crop
augmentation [11] for a fair comparison. Symbols: T Adapted
from [16]; ¥ Adapted from [12]; ¥ Adapted from [17]; * SynCo-
v2 without negatives; ** SynCo-v2 without synthetic negatives.

Method Epochs Top-1 Top-5 k-NN
Supervised [43] 300 81.3 - -
SiMIM [66] 100 56.0 - -
SMoG [49] 400 74.5 - -
MoBY [65] 300 75.0

BYOL [28]* (repr.) 300 68.5 894 58.0
MoBY [65]** (repr.) 300 7477 927  67.8

SynCo-v2 (ours) 300 754 931 69.3

Table 2. Linear and £-NN Swin classification on ImageNet.

4.2, Nearest Neighbor Retrieval

We evaluate our representations on image retrieval tasks to
assess their effectiveness for matching and similarity search.
Following the standard protocol, we consider the revisited
[53] Oxford and Paris datasets [51]. We freeze the features
and directly apply k-NN for retrieval. We report Mean Aver-
age Precision (mAP) for the Medium (M) and Hard (H) pro-
tocols. In Sec. 4.3 we compare SynCo-v2 with MoBY and
BYOL. We observe that SynCo-v2 demonstrates strong re-
trieval performance, outperforming both BYOL and MoBY.

4.3. Discovering the Semantic Layout of Scenes

A remarkable property of self-supervised vision transform-
ers, as shown by DINO [12, 48], is their ability to capture se-
mantic scene structure without supervision. We evaluate this
property through two complementary analyses: quantitative
video segmentation performance (Sec. 4.3) and qualitative
visualization of learned attention patterns (Fig. 4).
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Figure 4. DeiT-S/16 attention visualization across self-supervised methods. We show CLS attention (left group) and patch attention
(right group) for MoBY, BYOL, and our proposed SynCo-v2 method for odpr = 0.1 and odpr = 0.2.

Method RPar Method (T&E&F)m TIm Tr Fm Fr
M H M H DeiT-S
DeiT-S BYOL [28] (repr.) 41.3 41.5 409 41.1 33.6
BYOL [28] 23.80 5.40 5220 20.48 MoBY [65] (repr.) 42.2 42,1 396 422 349
MoBY [65] 30.44 6.83 61.92 2518 SynCo-v2 (ours) 44.3 44.1 41.8 44.5 38.5
SynCo-v2 (ours) 39.99 11.60 66.83 29.28 Swin-T
Swin-T BYOL [28] (repr.) 344 37.9 30.3 31.0 13.7
BYOL [28] 24.06 412 4973 18.73 MoBY [65] (repr.) 36.6 39.7 32.7 335 16.5
MOoBY [65] 30.44 733 61.46 24.43 SynCo-v2 (ours) 37.6 40.5 32.1 346 17.0
SynCo-v2 (ours) 34.28 8.01 63.93 27.33

Table 3. Image retrieval performance. We report mAP on revis-
ited Oxford (ROx) and Paris (RPar) datasets.

Video instance segmentation. We evaluate the spatial co-
herence of learned representations on the DAVIS-2017 video
instance segmentation benchmark [52], following [34]. We
segment scenes using nearest-neighbor matching between
consecutive frames without any training or finetuning, di-
rectly evaluating the frozen features. SynCo-v2 outperforms
both MoBY and BYOL on this task (Sec. 4.3).

Visualizing attention mechanisms. Recent work [12, 48]
demonstrated that vision transformers can segment objects
and focus on semantically meaningful regions without ex-
plicit supervision. However, it remains unclear whether

Table 4. DAVIS 2017 video object segmentation. We report mean
region similarity 7, mean contour-based accuracy JF,,, and their
respective recall metrics J, and F,. Image resolution is 480p.

these properties are exclusive to self-distillation methods or
emerge more generally in self-supervised vision transform-
ers. Following [12], we extract attention weights from the
last layer and visualize: (i) CLS attention, showing attention
from the [CLS] token to patches, and (ii) patch attentions,
showing self-attention patterns that capture object bound-
aries. As shown in Fig. 1, all methods segment foreground
objects from backgrounds. However, SynCo-v2 produces
significantly sharper attention maps, capturing fine-grained
details like the bear’s head and claws (Fig. 1), the horse’s
body structure (Fig. 1), and the dog’s head and feet (Fig. 4),
without employing multiple tricks as in DINO [12] (Sec. 2).



Method Cifaryy Cifaryg9 Flwrs Pets

F00d101 Cars Cltch101 DTD Aircft SUN397

vVOC

DeiT-S

BYOL [28] (repr.)  90.5 74.2 87.7 85.1
MoBY [65] (repr.) 88.9 73.0 56.8 80.8
SynCo-v2 (ours) 92.1 79.7 72.6 86.1

73.3 49.2 99.1 69.2 383 77.2 77.0
69.7 242 93.2 62.0 174 72.9 74.2
75.0 37.1 96.5 70.0 39.2 78.5 78.8

Swin-T

BYOL [28] (repr.))  88.6 72.2 83.8 83.0
MoBY [65] (repr.)  90.6 76.5 90.3 88.2
SynCo-v2 (ours) 914 77.7 89.5 88.5

73.7 34.7
78.8 60.2 99.3 713  43.6 84.0 79.9
79.8 61.5 994 72.1 433 84.6 80.4

99.0 721 289 77.9 78.5

Table 5. Linear probing performance on various downstream classification datasets. Results show top-1 accuracy (in %) with frozen
weights except for the final fully-connected layer. See Sec. 7.1 of the supplementary for dataset details.

Method Cifaryo Cifarjgo Flwrs Pets Foody; St 82 83 64 S5 S Deil-S Swin-T
DeiT-S X X X X X X 62 709
BYOL [28] (repr) 863 624 877 85.1 73.5 VX X X X X 695 712
MoBY [65] (repr) 752  80.3 66.0 823 71.0 X v X X X X 64 71
SynCo-v2 (ours)  96.8 83.1 88.3 87.2 85.7 X X v X X X 69.6 71.3
BREEE N
BYOL [28] (repr) 892 649 83.8 83.0 74.0 x X ox X § PR
MoBY [65] (repr) 97.3 848 90.3 882 79.8 X X X X X : :
SynCo-v2 (ours)  97.6 858 912 89.5 90.3 v Vv v v v v 100 716

Table 6. End-to-end finetuning performance on various down-
stream classification tasks. Results show top-1 accuracy (in %)
with all parameters updated during training.

4.4. Transfer Learning on Downstream Tasks

We evaluate whether the features learned on ImageNet with
SynCo-v2 are generic and thus useful across image domains,
or if they are ImageNet-specific. We perform linear evalua-
tion and fine-tuning on the same set of classification tasks
used in [37, 38]. We report results in Tables 5 and 6 for linear
evaluation and fine-tuning, respectively. SynCo-v2 outper-
forms MoBY and BYOL on the majority of benchmarks. In
linear probing, our method achieves superior performance
on 8 out of 11 datasets with DeiT-Small and 9 out of 11
datasets with Swin-Tiny. In fine-tuning, SynCo-v2 outper-
forms both baselines on all 5 evaluated datasets with both
architectures. SynCo-v2’s representation can be effectively
transferred to small images, e.g., CIFAR-10 and CIFAR-100
[40], fine-grained recognition tasks, e.g., Flowers-102 [46]
and Stanford Cars [39], landscapes, e.g., SUN397 [64], and
textures, e.g., DTD [18].

5. Ablation Study of SynCo-v2

We conduct ablation studies to analyze synthetic negative
strategies, regularization techniques, and hyperparameters.

Table 7. Ablation study on synthetic negative strategies on Ima-
geNet. Each strategy generates 128 synthetic negatives. We pretrain
for 100 epochs and report top-1 accuracy (%). We highlight the
default hyperparameter.

Synthetic hard negatives strategies. We perform ablation
studies on combinations of synthetic negative transforma-
tion strategies. Table 7 shows that combining all six types
(S1-S%) yields the highest performance. Without synthetic
negatives, the baseline improves by +0.8% and +0.7 % when
all strategies are applied. While individual strategies vary
in effectiveness (5% most impactful, then S 1), their combi-
nation provides complementary benefits exceeding the sum
of individual contributions, validating that diverse synthetic
negatives collectively improve representations.

Drop path regularization. We investigate the effect of
asymmetric drop path on online and farget encoders similar
to [65]. Table 8 shows that higher drop path rates for the on-
line encoder (0.2) with no dropout for the target encoder (0.0)
yields optimal results, improving DeiT-Small performance
by +0.6 % and Swin-Tiny by +0.7 % after 300 epochs com-
pared to using 0.1/0.0 rates. This asymmetric configuration
outperforms both no regularization and symmetric drop path
rates, with the effectiveness likely stemming from encourag-
ing the online encoder to learn more robust representations
while maintaining stability in the target encoder.
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Figure 5. Ablation studies on hyperparameters on ImageNet-100. We pretrain for 100 epochs and report top-1 accuracy (%) using DeiT-S
and Swin-T architectures. (left): queue size K; (second from left): temperature 7; (second from right): momentum myr; (right): online
drop path rate. Default hyperparameters: K = 4096, 7 = 0.2, mgan = 0.99, online drop path rate = 0.2.

Online dpr Target dpr Epochs DeiT-S Swin-T MoCo-v3 SynCo Deil-S Swin-T
0.0 0.0 100 68.3 70.0 v X 72.0 73.6
0.1 0.1 100 68.1 69.8 X X 72.2 74.1
0.05 0.0 100 69.7 71.4
v 73.1 75.4
0.1 0.0 100 69.8 71.5 x
0.2 0.0 100 70.0 71.6 Table 9. Ablation study on applying MoCo-v3 and SynCo fricks
0.1 0.0 300 72.5 74.7 on ImageNet. We pretrain for 300 epochs and report top-1 accuracy
0.2 0.0 300 73.1 75.4 (%). We highlight the default hyperparameter.

Table 8. Ablation study on the drop path rates on ImageNet. .
We pretrain for 100/300 epochs and report top-1 accuracy (%). We 6. Conclusion

highlight the default hyperparameter. . .
In this paper, we demonstrate that synthetic hard nega-

tives significantly improve vision transformer representa-
tions in self-supervised contrastive learning. We show that
emergent semantic segmentation properties—previously con-
sidered exclusive to self-distillation methods like DINO
[12]—mnaturally arise in contrastive learning and are fur-
ther strengthened through synthetic negative generation.
Our method, SynCo-v2, achieves five key improvements
over standard contrastive baselines: (i) improved ImageNet
linear accuracy, (ii) strong k-NN performance indicating
high-quality features, (iii) improved downstream task perfor-
mance across diverse settings, (iv) sharper attention maps
with better object boundary alignment, and (v) strong video
object segmentation despite no video training. These gains
are achieved without DINO’s complex procedures (centering,
sharpening, multi-crop, extended schedules); under identical
training regimes and without extra tricks, our approach con-
sistently outperforms baselines. We refer readers to Sec. 10

Tricks of MoCo-v3 and SynCo. We evaluate the neces-
sity of various implementation tricks from MoCo-v3 [16]
and SynCo [24]. Table 9 shows that fixed patch embeddings
from MoCo-v3 are unnecessary when using our approach,
while SynCo’s cooldown strategy (disabling synthetic neg-
atives in later epochs, specifically for the last 100 epochs)
achieves +0.9% on DeiT-Small and +1.3% on Swin-Tiny.
This cooldown approach has proven effective for both convo-
lutional architectures [24] and vision transformers (ours).
These findings demonstrate that our method reduces re-
liance on architecture-specific modifications, making it more
broadly applicable across different vision transformer vari-
ants while simplifying implementation.

Other hyperparameters. We study the robustness of our of the supplementary for discussion on scope, fair compari-
approach across different contrastive hyperparameter set- son—including DINO—and broader gains, and to Sec. 11
tings to demonstrate seamless integration with existing for limitations such as training with larger architectures and
frameworks. Figure 5 shows that performance remains stable computational budget. Overall, our results challenge the pre-
across a wide range of queue sizes, temperatures, and mo- vailing focus on self-distillation and generative approaches,
mentum values using default hyperparameters from MoBY. showing that contrastive learning with high-quality nega-
These findings confirm that synthetic negatives can be read- tives remains a simple yet powerful alternative that integrates
ily adopted in existing contrastive learning pipelines without cleanly with any InfoNCE-based method [62], generalizes
requiring architectural modifications, extensive hyperparam- across architectures, and incurs minimal overhead. We hope
eter re-tuning, or additional computational overhead during this work encourages renewed interest in the potential of
the hyperparameter search process. contrastive learning.
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