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Dataset Classes Train Test

ImageNet [21] 1000 1,281,167 50,000
ImageNet-100 [47] 100 128,116 5,000
CIFAR-10 [52] 10 50,000 10,000
CIFAR-100 [52] 100 50,000 10,000
Flowers-102 [64] 102 2,040 6,149
Oxford-IIIT Pets [67] 37 3,680 3,669
Food-101 [8] 101 75,750 25,250
Stanford Cars [51] 196 8,144 8,041
Caltech-101 [28] 101 3,060 6,085
DTD [19] 47 3,760 1,880
FGVC Aircraft [62] 100 6,667 3,333
SUN397 [89] 397 19,850 19,850
PASCAL VOC 2007 [26] 20 5,011 4,952

Table 9. Image dataset characteristics. This table lists the datasets
used for pretraining and/or evaluation.

7. Implementation Details

We implement SynCo-v2 in PyTorch following the imple-
mentation of MoBY [90]. We re-implement (i) MoBY [90]
(contrastive method with memory negatives), and (ii) BYOL
[34] (self-distillation method without negatives). All the
three previous methods share the exact same architecture of
the backbone fθ, projector gθ, and predictor hθ.

7.1. Datasets
Our experimental evaluation spans multiple visual recog-
nition benchmarks with varying complexity and domain
characteristics. The primary pretraining dataset is Ima-
geNet ILSVRC-2012 [21], containing 1.28M training images
across 1,000 object categories, while ImageNet-100 [47] (a
100-class subset with approximately 128K training images)
is used for ablation studies. Transfer learning assessment
encompasses eleven downstream classification tasks span-
ning different visual domains: CIFAR-10 and CIFAR-100
[52] contain natural images at low resolution (32× 32); Ox-
ford Flowers-102 [64] features fine-grained flower species;
Oxford-IIIT Pets [67] includes cat and dog breeds; Food-
101 [8] contains food dishes; Stanford Cars [51] includes
fine-grained car models; Caltech-101 [28] covers diverse
object categories; DTD [19] focuses on texture recognition;
FGVC Aircraft [62] contains fine-grained aircraft variants;
SUN397 [89] features scene recognition; and PASCAL VOC
2007 [26] includes multi-label object classification. Detailed
statistics for all datasets are provided in Table 9.
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7.2. Vision Transformer Architectures
Vision Transformer overview. We briefly describe the
mechanism of the Vision Transformer (ViT) [24, 81] and
refer to Vaswani et al. [81] for details about Transformers
and to Dosovitskiy et al. [24] for its adaptation to images.
We follow the implementation used in DeiT [80]. The ViT
architecture takes as input a grid of non-overlapping con-
tiguous image patches of resolution N ×N , typically using
N = 16 (/16) in this work. The patches are passed through
a linear layer to form a set of embeddings. An extra learn-
able token, referred to as the class token [CLS], is added
to the sequence to aggregate information from the entire
sequence [24, 53], even though it is not attached to any label
or supervision in our self-supervised setting. The projection
head gθ is attached at its output. The set of patch tokens
and [CLS] token are fed to a standard transformer network
with pre-norm layer normalization [5, 93]. The transformer
consists of a sequence of self-attention and feed-forward
layers with skip connections. The self-attention mechanism
computes attention weights between all pairs of tokens, al-
lowing each position to attend to all positions in the previous
layer. This global receptive field is a key distinction from
convolutional networks and enables the model to capture
long-range dependencies effectively.

Swin Transformer overview. The Swin Transformer [58]
introduces a hierarchical architecture with shifted window-
based self-attention, addressing computational efficiency
while maintaining the advantages of transformers. The win-
dow size used in this architecture is typically 7 × 7 (/7).
Unlike ViT which uses global self-attention, Swin Trans-
former employs local window-based self-attention that limits
computation to non-overlapping windows within the feature
map. To enable connections across windows, it alternates be-
tween regular and shifted window partitioning across succes-
sive layers. The hierarchical structure progressively merges
neighboring patches to create deeper feature maps at lower
resolutions, similar to convolutional networks. This design
reduces computational complexity from quadratic to linear
with respect to image size while allowing for efficient model-
ing of both local and global relationships through the shifted
window mechanism.

Architecture. For the DeiT-Small architecture [80], we
use a patch size of 16 × 16 (/16), 12 transformer blocks
with an embedding dimension of 384 and 6 attention heads,
resulting in 22M parameters (denoted as DeiT-Small/16
or DeiT-S). For the Swin-Tiny architecture [58], we use
a hierarchical design with shifted windows of size 7 × 7
(/7), featuring an embedding dimension of 96 that expands
through the network stages (96, 192, 384, 768), with 2, 2, 6,
and 2 blocks across the four stages respectively, resulting in

DeiT-S/16 Swin-T/7

Blocks 12 [2,2,6,2]
Dim 384 [96,192,384,768]
Heads 6 [3,6,12,24]
Params 22M 28M
Throughput 940 755

Table 10. Transformer architectural specifications. We report
the number of transformer blocks, embedding dimension, number
of attention heads, total parameters, and throughput (images/sec)
for the architectures used in this work.

Parameter T q T k

Random crop probability 1.0 1.0
Flip probability 0.5 0.5
Color jittering probability 0.8 0.8
Brightness adjustment max intensity 0.4 0.4
Contrast adjustment max intensity 0.4 0.4
Saturation adjustment max intensity 0.2 0.2
Hue adjustment max intensity 0.1 0.1
Color dropping probability 0.2 0.2
Gaussian blurring probability 1.0 0.1
Solarization probability 0.0 0.2

Table 11. Parameters used to generate image augmentations.
This table lists the augmentation probabilities and intensity settings
used for pretraining.

28M parameters (denoted as Swin-Tiny/7 or Swin-T). The
projection head gθ consists of a 2-layer MLP with a hidden
dimension of 4096, batch normalization [44], and ReLU ac-
tivation [63], followed by an output layer of dimension 256
without activation. The prediction head hθ follows the same
architecture. Both MLPs use ℓ2-normalization on their out-
puts to ensure all representations lie on the unit hypersphere,
which is standard practice in contrastive learning [13, 34, 36].
Detailed specifications are provided in Table 10.

7.3. Image Augmentations
We use the same augmentation as used in BYOL [34]. We
transform each input image with two sampled augmenta-
tions to produce two distorted versions of the input. The
augmentation pipeline consists of random cropping, resizing
to 224 × 224, randomly flipping the images horizontally,
applying color distortion, optionally converting to grayscale,
adding Gaussian blurring, and applying solarization. The
detailed parameter settings for these augmentations are pro-
vided in Table 11.

7.4. Pretraining
We pretrain all models on ImageNet ILSVRC-2012 [21]
for 300 epochs. We use the AdamW optimizer [60] with
a base learning rate of 1.5 × 10−4 and a weight decay of
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0.1. The training schedule begins with a warmup period
during the first 40 epochs in which the learning rate linearly
increases from zero to the base learning rate. Following
this, the learning rate gradually decreases to zero following
a cosine decay schedule without restarts. For the target
network, the exponential moving average parameter m starts
from mstart = 0.99 and is increased to one during training.
Specifically, we set m ≜ 1−(1−mstart) ·

(
cos

(
πk
K

)
+ 1

)
/2,

with k the current training step and K the maximum number
of training steps. We use a batch size of 512 split over 4
NVIDIA L40S GPUs (128 per GPU). We apply asymmetric
drop path rates [43] of 0.2 for the online encoder and 0.0 for
the target encoder.

SynCo-v2. For synthetic negatives, we empirically select
the top N = 256 hardest negatives from Q to form Q̂N ,
and generate 128 synthetic hard negatives for each of the six
transformation strategies, resulting in |Si| = 128 for each
strategy i. We use a temperature τ = 0.2 for the contrastive
loss and a queue size K = 4096 for the memory bank Q.
We implement a warmup phase for the first 30 epochs and a
cooldown period for the last 100 epochs, during which no
synthetic negatives S are generated. This cooldown strat-
egy stabilizes training and prevents potential over-fitting
to synthetic samples in the final training stages [30]. We
adopt the hyperparameters αk ∈ (0, 0.5), βk ∈ (1, 1.5),
γk ∈ (0, 1), σ = 0.01, δ = 0.01, and η = 0.01 from
Giakoumoglou and Stathaki [30], which were empirically
determined based on the intuition of each method for con-
volutional networks and remain fixed throughout training.
Additionally, Giakoumoglou and Stathaki [30] reported no
significant differences in ablations over σ, δ, and η.

BYOL. For reproduction of BYOL [34], we follow the
original implementation with some adaptations. We use
gradient accumulation of 8 steps resulting in an effective
batch size of 4096, maintaining the same base learning rate
of 1.5 × 10−4 and weight decay of 0.1. Unlike SynCo-
v2 and MoBY, BYOL does not use drop path regularization
(setting both online and target drop path to 0.0) or contrastive
temperature, as it employs a mean squared error loss instead
of InfoNCE.

7.5. Linear Probing
For linear evaluation, we follow the standard linear evalu-
ation protocol of [36, 49, 50], which consists of training a
linear classifier on top of the frozen features without updat-
ing the backbone network parameters or batch normaliza-
tion statistics. The linear classifier operates on the [CLS]
token representations for DeiT-S and the final global av-
erage pooled features for Swin-T. We use random resized
cropping with scale from [0.08, 1] and horizontal flipping

as data augmentation and train for 100 epochs with a 5-
epoch linear warmup, weight decay of 0, and SGD opti-
mizer with momentum of 0.9. For ImageNet linear eval-
uation, we select the learning rate via grid search over
{0.1, 0.5, 0.75, 1.0, 1.25, 1.5} and report top-1 and top-5
accuracy on center crops during validation. For all other
downstream tasks, we fix the learning rate to 1.0 to ensure
consistent evaluation across different datasets without exten-
sive hyperparameter tuning. We apply label smoothing with
ϵ = 0.1 for improved generalization.

7.6. Fine-tuning
For fine-tuning evaluations on transfer learning tasks, we
initialize networks with pretrained weights and adapt all
parameters during downstream task training, following es-
tablished protocols [24, 49, 50]. We train for 100 epochs
using SGD optimizer with momentum of 0.9, a base learning
rate of 1× 10−3, and weight decay of 1× 10−4. The learn-
ing rate follows a cosine decay schedule with a 10-epoch
linear warmup period. We apply standard data augmenta-
tion including random resized crops with scale [0.08, 1.0]
and random horizontal flipping during training. Additional
regularization includes dropout with rate 0.1 in the classifier
head and label smoothing with ϵ = 0.1. We apply gradient
clipping with a maximum norm of 1.0 to ensure stable train-
ing. We do not perform extensive hyperparameter search
for downstream evaluations and instead maintain consistent
configurations across all tasks.

8. Extended Results
In this section, we provide comprehensive evaluations of
SynCo-v2 on k-NN classification, robustness benchmarks,
adversarial attacks, and out-of-distribution detection tasks.

8.1. k-NN Classification Evaluation
To thoroughly evaluate the quality of representations learned
by SynCo-v2, we analyze k-nearest neighbors (k-NN) clas-
sification performance across multiple values of k on Im-
ageNet ILSVRC-2012. As shown in Table 12, SynCo-v2
consistently outperforms both BYOL and MoBY across all
evaluated neighborhood sizes for both DeiT-S and Swin-T
architectures. The performance advantage is most evident at
smaller neighborhood sizes (k = 10, 20), where SynCo-v2
achieves improvements of +6.5-8.0% over baselines with
DeiT-S and +1.4-9.4% with Swin-T. This indicates that syn-
thetic hard negatives help create a feature space where the
closest neighbors are highly semantically relevant, enabling
more accurate fine-grained discrimination.

8.2. Out-of-Distribution and Robustness Evaluation
To comprehensively assess the robustness and generaliza-
tion capabilities of learned representations, we evaluate on
multiple variants of ImageNet that test different aspects of
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Method k = 10 k = 20 k = 100 k = 200

DeiT-S
BYOL [34] (repr.) 62.53 62.43 60.49 59.12
MoBY [90] (repr.) 64.38 64.26 61.42 59.74
SynCo-v2 (ours) 71.02 70.45 67.66 65.86

Swin-T
BYOL [34] (repr.) 58.10 57.96 55.14 53.34
MoBY [90] (repr.) 67.84 67.14 63.68 61.82
SynCo-v2 (ours) 69.28 68.72 65.24 63.17

Table 12. k-NN classification on ImageNet ILSVRC-2012 across
different neighborhood sizes. Top-1 k-NN accuracy (%) for dif-
ferent values of k. Best results are in bold.

model reliability. For robustness evaluation, we employ four
datasets: ImageNet-v2 [70], which comprises three test sets
of 10,000 images each (matched frequency (MF), threshold
0.7 (T0.7), and top images (TI)) collected with a new data
collection process to assess distribution shift; ImageNet-
C (IN-C) [38], which applies 15 different corruption types
(noise, blur, weather, and digital distortions) at 5 severity lev-
els to measure resilience to common corruptions; ImageNet-
A (IN-A) [40], containing naturally occurring adversarial
examples that are difficult for ImageNet-trained models; and
ImageNet-Watermark (IN-W) [55], which includes water-
marked versions of ImageNet images to test robustness to
artificial perturbations. For out-of-distribution detection and
generalization, we use three datasets: ImageNet-Sketch (IN-
S) [82], containing 50,000 black-and-white sketch drawings
of ImageNet objects; ImageNet-R (IN-R) [39], consisting
of 30,000 artistic renditions across various styles (paintings,
cartoons, sculptures, graffiti, embroidery) to test domain
shift robustness; and ImageNet-O (IN-O) [40], containing
objects from classes not in ImageNet-1K to measure anomaly
detection via FPR95 (false positive rate at 95% true positive
rate, where lower is better). For all robustness benchmarks
except ImageNet-O, we report top-1 accuracy (in %). For
ImageNet-C, we report the mean accuracy across all corrup-
tion types and severity levels. For ImageNet-O, we follow
the standard protocol [39] and report FPR95, where a lower
value indicates better out-of-distribution detection capabil-
ity. All evaluations use the linear classifiers trained on clean
ImageNet, without any fine-tuning on the perturbed or out-
of-distribution data. We use center crop preprocessing for
all evaluations to ensure fair comparison across methods. As
shown in Table 13, SynCo-v2 achieves better overall balance
across diverse robustness benchmarks. These results suggest
that training with synthetic hard negatives improves the ro-
bustness of learned representations to various distribution
shifts and corruptions, without sacrificing clean accuracy.

8.3. Adversarial Robustness Evaluation
We evaluate the adversarial robustness of SynCo-v2 by test-
ing against a comprehensive suite of adversarial attacks that
represent diverse adversarial threat models. Following stan-
dard practices in adversarial machine learning [61], we as-
sess model performance against both white-box and black-
box attacks on the ImageNet validation set. All attacks are
implemented using the torchattacks library [48]. Our evalua-
tion includes: FGSM (Fast Gradient Sign Method) [32], a
single-step gradient-based attack with ϵ = 8/255; PGD (Pro-
jected Gradient Descent) [61], an iterative gradient-based
attack with ϵ = 8/255, step size α = 2/255, and 10 itera-
tions; C&W (Carlini & Wagner) [9], an optimization-based
attack that minimizes ℓ2 perturbation with confidence param-
eter κ = 0, 50 optimization steps, learning rate of 0.01, and
initial constant c = 10−4; Square Attack [2], a score-based
black-box attack using ℓ∞ norm with 1,000 queries; AutoAt-
tack [20], an ensemble of attacks that adaptively combines
multiple methods using ℓ∞ norm; TIFGSM (Translation-
Invariant FGSM) [23], which incorporates translation in-
variance with ϵ = 8/255, α = 2/255, and 10 steps; and
OnePixel [78], which modifies only a single pixel per image
using differential evolution with 10 steps. All attacks are
performed on the ImageNet validation set using the linear
classifiers trained on clean ImageNet. We do not perform
adversarial training and evaluate the natural robustness of
representations learned through self-supervised pretraining.
For gradient-based attacks (FGSM, PGD, C&W, TIFGSM),
we use the default threat model with ℓ∞ norm constraint
of ϵ = 8/255 for FGSM and PGD. For C&W, we use the
ℓ2 norm with confidence parameter κ = 0. For black-box
attacks (Square, AutoAttack), we use the default query bud-
gets. All evaluations use untargeted attacks and report top-1
accuracy (in %) on adversarial examples. As shown in Ta-
ble 14, SynCo-v2 achieves better overall balance across di-
verse adversarial threats. These results suggest that synthetic
hard negatives encourage the model to learn more robust
decision boundaries that are less susceptible to adversarial
perturbations, without requiring explicit adversarial training.

8.4. Computational Efficiency Analysis
To assess practical applicability, we analyze computational
requirements, including parameters, memory usage, and
wall-clock training time. Table 15 reports detailed measure-
ments for all methods. Due to computational limits, results
come from single runs rather than multiple trials, and we
omit standard deviations; training times may vary slightly
from system factors. Our findings show that SynCo-v2 de-
livers strong performance with minimal computational cost.
Synthetic negative generation uses simple transformations
(interpolation, extrapolation, mixup, noise injection, and
gradient-based perturbations) applied directly to memory-
queue embeddings, adding negligible overhead relative to
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Method Epochs Robustness Out-Of-Distribution

IN MF T-0.7 TI IN-C IN-A IN-W IN-S IN-R IN-O

DeiT-S
BYOL [34] (repr.) 300 70.3 58.0 66.4 72.5 41.5 7.0 54.2 18.2 27.8 87.2
MoBY [90] (repr.) 300 72.3 60.0 67.8 74.5 39.5 16.4 49.6 24.1 32.3 100.0
SynCo-v2 (ours) 300 73.1 60.8 69.6 75.5 44.5 10.2 55.7 22.3 31.7 100.0

Swin-T
BYOL [34] (repr.) 300 68.5 56.5 64.7 70.6 40.4 6.9 52.8 17.7 27.1 85.0
MoBY [90] (repr.) 300 74.7 62.9 71.4 77.3 44.8 7.5 63.0 22.9 35.2 83.1
SynCo-v2 (ours) 300 75.4 64.0 72.4 78.0 46.0 8.6 62.4 23.1 35.8 77.6

Table 13. Robustness and out-of-distribution evaluation of self-supervised methods. Results show top-1 accuracy (in %) on various
ImageNet variants using DeiT-S and Swin-T backbones, except ImageNet-O where FPR95 is reported. Best results are in bold.

Method Epochs Clean FGSM PGD C&W Square Auto TIFGSM OnePixel

DeiT-S
BYOL [34] (repr.) 300 70.3 25.0 3.0 29.5 22.4 2.7 11.8 68.9
MoBY [90] (repr.) 300 72.3 27.1 14.8 34.0 20.4 13.1 17.0 70.4
SynCo-v2 (ours) 300 73.1 24.6 15.8 37.7 19.6 12.6 18.7 71.4

Swin-T
BYOL [34] (repr.) 300 68.5 24.4 2.9 28.8 21.9 2.6 11.5 67.1
MoBY [90] (repr.) 300 74.7 22.7 1.5 27.6 25.8 1.2 14.1 73.7
SynCo-v2 (ours) 300 75.4 22.3 2.1 29.7 26.3 2.9 14.3 74.4

Table 14. Adversarial robustness evaluation of self-supervised methods. Results show top-1 accuracy (in %) under various attacks on
ImageNet validation set using DeiT-S and Swin-T architectures. Best results are in bold.

backbone forward/backward passes. SynCo-v2 keeps the
same parameter count as contrastive baselines, requiring
no architectural changes or extra components. Memory
overhead from storing synthetic negatives (768 samples)
is small, and the on-the-fly generation removes the need for
pre-computed datasets or external augmentation models.

9. Extended Related Work

In this section, we provide additional context in self-
supervised learning, contrastive methods, and synthetic neg-
ative generation to complement the discussion in the main
paper.

“If AI is a cake, self-supervised learning is the bulk
of the cake.” — Yann LeCun [54]

9.1. Self-supervised Learning
Self-supervised learning has evolved through multiple
paradigms, each with distinct approaches to learning visual
representations. Early pretext task methods [31, 65, 96] de-
fined auxiliary supervised tasks to learn features, but were
limited by task-specific biases. Joint embedding methods
[11, 13, 34, 36] learn by comparing different views of data,

with different approaches to avoiding representational col-
lapse. In contrast to joint embedding approaches that learn
through comparison and distinction between different views
or instances, an alternative major branch of self-supervised
learning adopts a generative methodology. These genera-
tive techniques learn through reconstruction or prediction
of input data components, with Masked Image Modeling
(MIM) establishing itself as a particularly effective strategy.
iGPT [12] introduced the idea of treating images as sequen-
tial data for autoregressive prediction, which was subse-
quently followed by BEiT [6] and BEiT-v2 [68], transferring
BERT-style [22] masked prediction methodologies to com-
puter vision. MAE [37] demonstrated that extensive mask-
ing of image patches (reaching 75%) establishes an effec-
tive self-supervised objective, while SimMIM [92] stream-
lined the methodology with lightweight prediction architec-
tures. Subsequent improvements include: MaskFeat [86]
which predicted HOG features rather than raw pixels, Con-
text Autoencoder [18] which exploited contextual relation-
ships, and MSN [3] which integrated masking with siamese
network architectures. Contemporary research has empha-
sized efficiency and effectiveness through methodologies
including SiamMAE [35], MixMAE [56], PixMIM [57], and
TinyMIM [71]. While recent developments include Crop-
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Method Total Trainable Avg Mem Time/ 100 Ep. 300 Ep.
Params Params ↓ (MB) Epoch ↓ (min) ↓ (h) ↓ (h)

ViT-Small
BYOL [34] 50.7M 26.3M (51.93%) 21,316 31.60 52.66 157.97
MoBY [90] 50.7M 26.3M (51.93%) 21,325 32.71 54.52 163.55
SynCo-v2 (ours) 50.7M 26.3M (51.93%) 21,325 31.60 52.66 157.99

Swin-Tiny
BYOL [34] 65.6M 33.8M (51.61%) 29,167 39.72 66.19 198.58
MoBY [90] 65.6M 33.8M (51.61%) 29,177 39.78 66.31 198.93
SynCo-v2 (ours) 65.6M 33.8M (51.61%) 29,176 38.75 64.58 193.75

Table 15. Computational efficiency comparison. Model parameters, memory consumption, and training duration for all methods trained
with batch size 512 across 4 GPUs on ImageNet ILSVRC-2012. Lower memory and training time are better (indicated by ↓).

MAE [27] featuring efficient siamese cropped autoencoder
designs and ColorMAE [41] investigating data-independent
masking approaches. These generative methodologies differ
fundamentally from discriminative techniques by learning to
predict or reconstruct absent information rather than contrast-
ing different views or instances, providing a complementary
pathway to self-supervised visual learning. While generative
methods currently achieve higher top-1 accuracy on Ima-
geNet [37], joint embedding approaches often surpass them
in linear probing tasks and exhibit stronger emergent proper-
ties such as unsupervised semantic segmentation [11, 66].

9.2. Contrastive Learning
Contrastive learning has progressed from early instance dis-
crimination methods [88] to sophisticated frameworks em-
ploying momentum encoders [16, 36], large batch sizes [13],
and advanced augmentation strategies [14]. Key innova-
tions include the introduction of momentum-based memory
banks to increase the number of negative samples [36], the
demonstration that very large batch sizes can replace mem-
ory banks [13], and the development of asymmetric network
designs that avoid collapse without explicit negative samples
[15, 34]. More recent works have explored nearest-neighbor
contrastive learning [25], representation decorrelation [95],
relative location prediction [79], and region-level contrastive
learning [91]. Despite these advances, the role of negative
sample quality versus quantity remains an active research
question [1, 72], with ongoing debates about whether con-
trastive methods can match the performance of generative
approaches without extensive computational resources.

9.3. Hard Negative Mining
Hard negative mining has a rich history in computer vision,
originally developed for object detection [29, 75] and later
adapted for metric learning [73, 77]. In contrastive learning,
various strategies have emerged to identify and leverage hard
negatives: selecting negatives with high similarity to the
anchor [72], using nearest neighbors in the embedding space

[25], employing debiased sampling to address false nega-
tives [94], and generating synthetic hard negatives through
mixing [46] or adversarial perturbations [42]. MoCHI [46]
introduced hard negative mixing for contrastive learning in
convolutional networks, while DCL [94] explored debiased
contrastive learning to mitigate the impact of false negatives.
SynCo [30] systematically explored six synthetic negative
generation strategies for convolutional networks, demon-
strating consistent improvements. Our work extends this
approach to vision transformers, showing that the benefits of
synthetic hard negatives transfer effectively to transformer
architectures and enhance both discriminative performance
and emergent semantic properties.

9.4. Self-supervised Vision Transformers
The adaptation of transformers to computer vision [24, 58,
80] has enabled new self-supervised learning approaches.
DINO [11] demonstrated that self-distillation with vision
transformers produces strong emergent properties in atten-
tion mechanisms, while MoCo-v3 [17] and MoBY [90]
showed that contrastive learning can be effectively adapted to
transformers with appropriate modifications such as random
patch projection and asymmetric architectures. Masked au-
toencoding methods like MAE [37], BEiT [6], and SimMIM
[92] have achieved state-of-the-art results by leveraging
transformers’ ability to handle variable-length sequences and
reconstruct masked patches. Recent works have combined
multiple self-supervised objectives, such as iBOT [97] which
integrates masked image modeling with self-distillation, and
I-JEPA [4] which predicts representations of masked regions
in latent space. Scaling efforts have demonstrated that self-
supervised vision transformers can be trained on billions of
images to achieve remarkable zero-shot and few-shot capa-
bilities, as shown by DINO-v2 [66], SEER [33], and V-JEPA
[7].

Our work demonstrates that simple contrastive
learning with improved negative sampling can

6



achieve competitive performance and emergent
properties without requiring complex training pro-
cedures, multi-crop augmentation strategies [10],
or massive computational scale, making it an ac-
cessible and effective alternative for practitioners
with limited resources.

9.5. Emergent Properties
A particularly intriguing aspect of self-supervised vision
transformers is their emergent semantic segmentation ca-
pabilities without explicit supervision. DINO [11] first ob-
served that self-attention maps naturally correspond to object
boundaries and semantically meaningful regions, enabling
applications in unsupervised object discovery and weakly-
supervised segmentation. DINO-v2 [66] demonstrated that
these properties strengthen with scale, achieving impressive
zero-shot segmentation performance. Recent work has ex-
plored the mechanisms behind these emergent properties:
TokenCut [85] leverages self-attention for unsupervised im-
age segmentation, LOST [76] localizes objects in images
without supervision using ViT features, and FreeSOLO [84]
performs self-supervised instance segmentation. Our work
contributes to this line of research by demonstrating that
contrastive learning with synthetic hard negatives can elicit
similar emergent properties, suggesting that these capabil-
ities are not exclusive to self-distillation methods but can
be enhanced through improved negative sampling strategies
that encourage semantically meaningful attention patterns.

10. Discussion

In this section, we discuss the computational efficiency and
design principles of SynCo-v2. Our findings challenge the
prevailing assumption that negative samples are secondary in
self-supervised vision transformers, demonstrating their crit-
ical role in achieving competitive performance and offering
a simpler alternative to dominant generative methods.

10.1. Computational Efficiency and Overhead
While synthetic negative generation introduces minimal
computational overhead during training, the benefits sub-
stantially outweigh the costs. The memory overhead of
storing synthetic negatives is negligible (O(|S| · d) where
|S| = 768 ≪ K = 4096), as we generate only 768 syn-
thetic negatives compared to 4096 memory bank negatives.
The generation process adds negligible additional training
time, as it primarily involves computing similarity scores
to identify hard negatives and applying the six transforma-
tion strategies—operations that require minimal computation
compared to forward passes through the encoder. The effi-
cient implementation ensures that our method remains prac-
tical for large-scale pretraining while delivering consistent
performance gains.

10.2. Intuition of SynCo-v2

To address why these specific transformations improve rep-
resentation learning, we provide intuition for each of the six
synthetic negative generation strategies [30]. Type 1 (interpo-
lation) creates samples between the query and hard negatives,
increasing diversity and encouraging refined decision bound-
aries in semantically ambiguous regions. Type 2 (extrapo-
lation) pushes beyond the query away from hard negatives,
exploring extreme representation space regions and improv-
ing robustness. Type 3 (mixup) combines hard negative pairs,
creating novel challenging samples that encourage general-
ized feature learning beyond the original distribution. Type 4
(noise injection) adds Gaussian perturbations, promoting in-
variance to minor fluctuations and enhancing generalization.
Type 5 (gradient-based perturbation) modifies embeddings
using similarity gradients with variable magnitude, refining
discriminatory power by directing toward higher confusion
regions. Type 6 (adversarial perturbation) applies sign-based
gradient perturbations with fixed magnitude, creating max-
imally challenging contrasts. The complementary nature
of these strategies ensures comprehensive coverage of chal-
lenging regions, preventing overfitting to specific negative
patterns while maintaining appropriate task difficulty. For
detailed analysis, we refer readers to Giakoumoglou and
Stathaki [30].

10.3. Strong and Consistent Gains

Our method demonstrates substantial improvements across
all evaluation metrics, achieving state-of-the-art results
among methods with comparable architectural complex-
ity and training budgets. As shown in Table 1, SynCo-v2
achieves 73.1% top-1 accuracy on ImageNet linear evalua-
tion with DeiT-S, representing a significant +0.8% improve-
ment over the MoBY baseline and a remarkable +2.8%
gain over BYOL. With Swin-T, we obtain 75.4% accuracy,
outperforming MoBY by +0.7% and BYOL by +6.9%.
These gains are particularly noteworthy given that they are
achieved through a simple modification to the contrastive
learning framework—generating synthetic hard negatives

“on-the-fly”—without requiring architectural changes, com-
plex training tricks, or the multi-crop augmentation strate-
gies employed by methods like DINO. Furthermore, the
consistency of improvements across two distinct transformer
architectures (DeiT and Swin), multiple downstream tasks
(Tables 2 and 3), and emergent properties (Figure 3) demon-
strates that synthetic hard negatives provide genuine repre-
sentational benefits rather than task-specific overfitting. The
additional computational cost is minimal, as synthetic neg-
ative generation requires only lightweight transformations
on existing embeddings, making the cost-benefit ratio highly
favorable for practitioners seeking improved performance
without substantial infrastructure investment.
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10.4. Comparison to DINO Visualizations
While our attention visualizations (Figures 6 to 10) demon-
strate that SynCo-v2 produces sharper and more semanti-
cally meaningful attention maps compared to MoBY and
BYOL, we acknowledge that they do not yet reach the ex-
ceptional quality of DINO [11] and DINO-v2 [66] visual-
izations. However, this comparison must be contextualized:
DINO employs (i) multi-crop augmentation (2 global crops
at 224×224 and multiple local crops at 96×96), (ii) trains for
significantly longer (800-1600 epochs vs. our 300 epochs),
and (iii) uses various training tricks (centering, sharpening,
temperature scaling) specifically designed to improve sta-
bility and attention quality. In contrast, SynCo-v2 achieves
its attention properties through simple contrastive learning
with synthetic hard negatives, using only standard two-crop
augmentation at 224× 224 resolution and a 300-epoch train-
ing schedule. Despite these differences in training setup,
SynCo-v2 demonstrates strong emergent segmentation capa-
bilities that significantly surpass baseline contrastive learn-
ing (MoBY) and self-distillation without negatives (BYOL).
This suggests that synthetic hard negatives provide a com-
plementary mechanism for improving attention quality that
could potentially be combined with DINO-style training pro-
cedures. Future work exploring the integration of synthetic
hard negatives with multi-crop augmentation, longer training
schedules, and other attention-enhancing techniques could
yield even stronger emergent properties while maintaining
the simplicity of contrastive learning.

10.5. Revisiting Negative Samples
Our findings challenge the prevailing assumption that neg-
ative samples are less important than other design choices
in self-supervised learning for vision transformers. The suc-
cess of DINO [11] and its variants has led many researchers
to focus on self-distillation approaches that avoid negatives
entirely, potentially overlooking the untapped potential of im-
proved negative sampling strategies. Our work demonstrates
that contrastive learning with high-quality negatives can
achieve competitive performance and strong emergent prop-
erties, offering a simpler alternative to methods requiring
complex training tricks (centering, sharpening, multi-crop
augmentation).

This suggests that the community should recon-
sider contrastive learning as an approach that
excels in generalizing on previously unseen data,
developing emergent abilities, and achieving im-
proved representation quality, compared to domi-
nant generative approaches [6, 37].

10.6. Potential Extensions
Several promising directions could extend our work. First,
exploring large language models or vision-language models

to generate semantically-aware synthetic negatives could fur-
ther improve representation quality by creating negatives that
are challenging at a semantic rather than purely embedding-
space level. Second, adapting our approach for multimodal
contrastive learning (e.g., CLIP [69], ALIGN [45]) could im-
prove vision-language alignment by providing harder cross-
modal negatives. Third, investigating the role of synthetic
hard negatives in continual learning or domain adaptation set-
tings could reveal whether they help mitigate catastrophic for-
getting or improve transfer across distribution shifts. Fourth,
combining synthetic negatives with recent advances in mo-
mentum encoders (e.g., exponential moving average variants
[66]) or projection head designs could yield additional im-
provements. Finally, extending our analysis to other trans-
former variants (e.g., Swin-V2 [59], CvT [87], PVT [83])
would validate the generality of our findings across diverse
architectural designs.

11. Limitations
In this section, we discuss the limitations of our method,
including constraints on model scale, training duration, and
hyperparameter tuning..

11.1. Architectural Scale
Due to limited computational resources, our experiments
were constrained to smaller architectures (DeiT-Small with
22M parameters and Swin-Tiny with 28M parameters). We
acknowledge that evaluating our approach on larger mod-
els such as DeiT-Base/ViT-Base (86M parameters), DeiT-
Large/ViT-Large (304M parameters), and Swin-Base (88M
parameters) would provide valuable insights into scalability
and performance gains at increased model capacity. How-
ever, these larger architectures require > 8 GPUs to maintain
the respective batch sizes (even for batch size 512), which
was beyond our available computational budget. We believe
the current architectures are sufficient to demonstrate the
effectiveness of synthetic hard negatives for vision trans-
formers, particularly given that: (i) we show consistent im-
provements across two distinct transformer architectures
(DeiT and Swin), suggesting the approach generalizes across
different design paradigms, and (ii) the method achieves
meaningful gains over strong baselines with the same com-
putational constraints.

11.2. Training Budget
Similarly, our experiments were limited to 300-epoch train-
ing schedules on ImageNet at 224× 224 resolution; due to
computational constraints, we did not perform multiple runs
to assess variability. Investigating longer training regimes
(e.g., 800–1600 epochs as in DINO [11] and DINO-v2 [66])
and higher resolutions could reveal whether synthetic hard
negatives provide additional benefits with extended training
budgets.
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11.3. Hyperparameter Tuning

We did not perform extensive hyperparameter tuning or ab-
lations for all possible combinations of synthetic negative
strategies and their parameters due to computational con-
straints. Instead, we adopted most hyperparameters from
SynCo [30] (which was designed for convolutional networks)
and made minimal adaptations based on empirical observa-
tions with vision transformers. In particular, we also adopted
the cooldown strategy from SynCo [30], where synthetic
hard negatives are disabled in the final 100 epochs to sta-
bilize training and prevent overfitting to increasingly dif-
ficult negatives. Given that our method already achieves
substantial performance gains over the baseline with these
empirically set hyperparameters, and considering the mini-
mal sensitivity observed across different configurations, we
found no compelling need for exhaustive tuning. While we
demonstrate in the main paper that using all six synthetic
negative strategies yields the best performance, a more sys-
tematic exploration of strategy combinations, the number
of synthetic negatives per strategy, hard negative selection
thresholds, and transformation parameters could potentially
uncover marginal improvements. However, the consistent
gains achieved with our current empirical configuration sug-
gest that the method is reasonably robust to hyperparameter
choices, making it practical for adoption without extensive
tuning.

12. Attention Visualization

In this section, we provide extensive attention visualizations
to demonstrate the emergent semantic segmentation proper-
ties of vision transformers.

12.1. Vision Transformer

For DeiT-Small, we extract and visualize attention maps
using two complementary approaches: (i) [CLS] token at-
tention, and (ii) patch self-attention. We extract attention
weights from the last transformer layer following DINO vi-
sualization protocol [11]. For [CLS] attention, we take the
attention weights from the [CLS] token to all patch tokens,
average across attention heads, reshape to the spatial grid
(14 × 14 for patch size 16), and upsample to the original
image resolution (224 × 224) using bilinear interpolation.
For patch self-attention, we compute the average attention
each patch receives from all other patches (excluding the
[CLS] token), which naturally highlights salient regions
and object boundaries. We apply thresholding to focus on
the most attended regions. As shown in Figures 6 to 10,
SynCo-v2 consistently produces sharper and more semanti-
cally meaningful attention patterns compared to both MoBY
and BYOL.

12.2. Swin Transformer
For Swin-Tiny, direct attention map extraction is challeng-
ing due to the hierarchical window-based architecture where
attention is computed within local windows rather than glob-
ally. Therefore, we employ two complementary gradient-
based visualization methods to reveal which spatial regions
most strongly influence the model’s predictions: (i) Class
Activation Mapping (CAM) [74], and (ii) Gradient Saliency.
For CAM visualization [74], we extract the final feature map
before the global average pooling layer and compute the
weighted combination of feature maps using the gradients of
the predicted class score with respect to the feature activa-
tions. For gradient saliency, we compute the absolute gradi-
ent of the predicted class score with respect to input pixels:
Saliency =

∣∣∣∂yc

∂x

∣∣∣, which highlights regions with the largest
influence on predictions. We average across color channels
and normalize the saliency map. Both visualizations use
the predicted class (rather than ground truth) to reflect what
the model actually learned. As shown in Figures 11 to 15,
despite the architectural differences between DeiT and Swin,
we observe consistent patterns where SynCo-v2 produces
more focused and semantically meaningful gradient-based
attention maps.

13. Broader Impact
The presented research should be categorized as research in
the field of unsupervised learning. This work may inspire
new algorithms, theoretical, and experimental investigation.
The algorithm presented here can be used for many differ-
ent vision applications and a particular use may have both
positive or negative impacts, which is known as the dual use
problem. Besides, as vision datasets could be biased, the
representation learned by SynCo-v2 could be susceptible to
replicate these biases.

14. Checkpoint Availability
The pre-trained model checkpoints for models trained on the
ImageNet ILSVRC-2012 dataset are available for download:
DeiT (top-1 linear evaluation accuracy 73.1%) and Swin
(top-1 linear evaluation accuracy 75.4%).
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Tallec, Pierre H. Richemond, Elena Buchatskaya, Carl Do-
ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-
mad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi
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CLS Attention Patch Attentions

Image SynCo-v2 SynCo-v2 SynCo-v2 SynCo-v2
MoBY [90] BYOL [34]

(odpr = 0.1) (odpr = 0.2)
MoBY [90] BYOL [34]

(odpr = 0.1) (odpr = 0.2)

Figure 6. DeiT-S/16 attention visualization. We show images 1 to 10.
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CLS Attention Patch Attentions

Image SynCo-v2 SynCo-v2 SynCo-v2 SynCo-v2
MoBY [90] BYOL [34]

(odpr = 0.1) (odpr = 0.2)
MoBY [90] BYOL [34]

(odpr = 0.1) (odpr = 0.2)

Figure 7. DeiT-S/16 attention visualization. We show images 11 to 20.
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CLS Attention Patch Attentions

Image SynCo-v2 SynCo-v2 SynCo-v2 SynCo-v2
MoBY [90] BYOL [34]

(odpr = 0.1) (odpr = 0.2)
MoBY [90] BYOL [34]

(odpr = 0.1) (odpr = 0.2)

Figure 8. DeiT-S/16 attention visualization. We show images 21 to 30.

15



CLS Attention Patch Attentions

Image SynCo-v2 SynCo-v2 SynCo-v2 SynCo-v2
MoBY [90] BYOL [34]

(odpr = 0.1) (odpr = 0.2)
MoBY [90] BYOL [34]

(odpr = 0.1) (odpr = 0.2)

Figure 9. DeiT-S/16 attention visualization. We show images 31 to 40.
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CLS Attention Patch Attentions

Image SynCo-v2 SynCo-v2 SynCo-v2 SynCo-v2
MoBY [90] BYOL [34]

(odpr = 0.1) (odpr = 0.2)
MoBY [90] BYOL [34]

(odpr = 0.1) (odpr = 0.2)

Figure 10. DeiT-S/16 attention visualization. We show images 41 to 50.
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CAM Gradient Saliency

Image SynCo-v2 SynCo-v2 SynCo-v2 SynCo-v2
MoBY [90] BYOL [34]

(odpr = 0.1) (odpr = 0.2)
MoBY [90] BYOL [34]

(odpr = 0.1) (odpr = 0.2)

Figure 11. Swin-T/7 visualization. We show images 1-10
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CAM Gradient Saliency

Image SynCo-v2 SynCo-v2 SynCo-v2 SynCo-v2
MoBY [90] BYOL [34]

(odpr = 0.1) (odpr = 0.2)
MoBY [90] BYOL [34]

(odpr = 0.1) (odpr = 0.2)

Figure 12. Swin-T/7 visualization. We show images 11-20
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CAM Gradient Saliency

Image SynCo-v2 SynCo-v2 SynCo-v2 SynCo-v2
MoBY [90] BYOL [34]

(odpr = 0.1) (odpr = 0.2)
MoBY [90] BYOL [34]

(odpr = 0.1) (odpr = 0.2)

Figure 13. Swin-T/7 visualization. We show images 21-30
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CAM Gradient Saliency

Image SynCo-v2 SynCo-v2 SynCo-v2 SynCo-v2
MoBY [90] BYOL [34]

(odpr = 0.1) (odpr = 0.2)
MoBY [90] BYOL [34]

(odpr = 0.1) (odpr = 0.2)

Figure 14. Swin-T/7 visualization. We show images 31-40
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CAM Gradient Saliency

Image SynCo-v2 SynCo-v2 SynCo-v2 SynCo-v2
MoBY [90] BYOL [34]

(odpr = 0.1) (odpr = 0.2)
MoBY [90] BYOL [34]

(odpr = 0.1) (odpr = 0.2)

Figure 15. Swin-T/7 visualization. We show images 41-50
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